

TCG

TPM Main
Part 1 Design Principles

Specification Version 1.2
Revision 62
2 October 2003
Published

Contact: tpmwg@trustedcomputinggroup.org

TCG PUBLISHED
Copyright © TCG 2003

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page ii of xi
 TCG PUBLISHED

Copyright © 2003 Trusted Computing Group, Incorporated.

Disclaimer

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Without limitation, TCG disclaims
all liability, including liability for infringement of any proprietary rights, relating to use of information in this
specification and to the implementation of this specification, and TCG disclaims all liability for cost of
procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental,
consequential, direct, indirect, or special damages, whether under contract, tort, warranty or otherwise,
arising in any way out of use or reliance upon this specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any TCG or TCG member intellectual property
rights is granted herein.

Except that a license is hereby granted by TCG to copy and reproduce this specification for internal use
only.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page iii of xi
 TCG PUBLISHED

Acknowledgement

TCG wishes to thank all those who contributed to this specification. This version builds on the work published
in version 1.1 and those who helped on that version have helped on this version.

A special thank you goes to the members of the TPM workgroup who had early access to this version and
made invaluable contributions, corrections and support.

David Grawrock

TPM Workgroup chair

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page iv of xi
 TCG PUBLISHED

Change History

Version Date Description

Rev 50 Jun
2003

Started 30 Jun 2003 by David Grawrock

First cut at the design principles

Rev 52 Jul
2003

Started 15 Jul 2003 by David Grawrock

Moved

Rev 58 Aug
2003

Started 27 Aug 2003 by David Grawrock

All emails through 28 August 2003

New delegation from Graeme merged

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page v of xi
 TCG PUBLISHED

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page vi of xi
 TCG PUBLISHED

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page vii of xi
 TCG PUBLISHED

Table of Contents
1. Description ...1

1.1 TODO (notes to keep the editor on track) ...2

1.2 Questions ..3

1.2.1 Delegation Questions..6

1.2.2 NV Questions ...10

2. TPM Architecture ..11

2.1 Interoperability ..11

2.2 Components ..11

2.2.1 Input and Output ...11

2.2.2 Cryptographic Co-Processor..12

2.2.3 Key Generation...14

2.2.4 HMAC Engine...14

2.2.5 Random Number Generator ..15

2.2.6 SHA-1 Engine...17

2.2.7 Power Detection..18

2.2.8 Opt-In ..18

2.2.9 Execution Engine ...19

2.2.10 Non-Volatile Memory ..19

2.3 Data Integrity Register (DIR) ..20

2.4 Platform Configuration Register (PCR)..21

3. Endorsement Key Creation..23

3.1 Controlling Access to PRIVEK ..24

3.2 Controlling Access to PUBEK ...25

4. Attestation Identity Keys ...26

5. TPM Ownership ..27

5.1 Platform Ownership and Root of Trust for Storage....................................27

6. Authorization Data..28

6.1 Dictionary Attack Considerations...28

7. TPM Operation..30

7.1 TPM Initialization & Operation State Flow..31

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page viii of xi
 TCG PUBLISHED

7.1.1 Initialization ...31

7.2 Self-Test Modes ...32

7.2.1 Operational Self-Test ..33

7.3 Startup..35

7.4 Operational Mode ..35

7.4.1 Enabling a TPM ..36

7.4.2 Activating a TPM...37

7.4.3 Taking TPM Ownership...39

7.4.4 Transitioning Between Operational States...40

7.5 Clearing the TPM ...40

8. Physical Presence..42

9. Root of Trust for Reporting (RTR)...44

9.1 Platform Identity..44

9.2 RTR to Platform Binding ..44

9.3 Platform Identity and Privacy Considerations ...45

9.4 Attestation Identity Keys ..45

9.4.1 AIK Creation...46

9.4.2 AIK Storage ..46

10. Root of Trust for Storage (RTS) ...47

10.1 Loading and Unloading Blobs ..47

11. Transport Sessions and Authorization Protocols ...48

11.1 Authorization Session Setup ..49

11.2 Parameter Declarations for OIAP and OSAP Examples50

11.2.1 Object-Independent Authorization Protocol (OIAP)52

11.3 Object-Specific Authorization Protocol (OSAP) ..54

11.4 Authorization Session Handles ..58

11.5 Authorization-Data Insertion Protocol (ADIP)..58

11.6 Authorization-Data Change Protocol (ADCP) ..61

11.7 Asymmetric Authorization Change Protocol (AACP)62

12. FIPS 140 Physical Protection ..63

13. Maintenance ..64

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page ix of xi
 TCG PUBLISHED

13.1 Field Upgrade ..65

14. Proof of Locality..67

15. Monotonic Counter...68

16. Transport Protection...71

16.1 Transport encryption and authorization...73

16.1.1 MGF1 parameters...74

16.1.2 HMAC calculation...75

16.1.3 Transport log creation ..75

16.1.4 Additional Encryption Mechanisms...76

16.2 Transport Error Handling ..77

16.3 Exclusive Transport Sessions...78

16.4 Transport Audit Handling ..79

16.4.1 Auditing of wrapped commands..79

17. Audit Commands ...80

17.1 Audit Monotonic Counter...82

17.2 Audit Generation ...83

17.3 Effect of audit failing after successful completion of a command84

18. Design Section on Time Stamping...85

18.1 Tick Components...86

18.2 Basic Tick Stamp...86

18.3 Associating a TCV with UTC...87

18.4 Additional Comments and Questions ...89

19. Context Management..90

20. Eviction..92

21. Session pool ...93

22. Initialization Operations ...94

23. HMAC digest rules..95

24. Generic authorization session termination rules ...96

25. PCR Grand Unification Theory..97

25.1 Validate Key for use ...100

26. Non Volatile Storage ...101

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page x of xi
 TCG PUBLISHED

26.1 NV storage design principles ..102

26.1.1 NV Storage use models ...102

26.2 Use of NV storage during manufacturing..104

27. Delegation Model..105

27.1 Table Requirements ...106

27.2 How this works..107

27.3 Family Table ..109

27.4 Delegate Table ...110

27.5 Delegation Administration Control ...111

27.5.1 Control in Phase 1..111

27.5.2 Control in Phase 2..112

27.5.3 Control in Phase 3..112

27.6 Family Verification...114

27.7 Use of commands for different states of TPM..116

27.8 Delegation Authorization Values ..117

27.8.1 Using the authorization value ...117

27.9 DSAP description...118

28. Physical Presence ...121

28.1 Use of Physical Presence ..122

29. TPM Internal Asymmetric Encryption ...123

29.1.1 TPM_ES_RSAESOAEP_SHA1_MGF1 ...123

29.1.2 TPM_ES_RSAESPKCSV15...124

29.1.3 TPM_ES_SYM_CNT ...124

29.1.4 TPM_ES_SYM_OFB...124

29.2 TPM Internal Digital Signatures ...125

29.2.1 TPM_SS_RSASSAPKCS1v15_SHA1 ...125

29.2.2 TPM_SS_RSASSAPKCS1v15_DER ...125

29.2.3 TPM_SS_RSASSAPKCS1v15_INFO ..125

29.2.4 Use of Signature Schemes ..126

30. Key Usage Table ...127

31. Direct Anonymous Attestation ..128

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page xi of xi
 TCG PUBLISHED

31.1 TPM_DAA_JOIN ...129

31.2 TPM_DAA_Sign ..131

31.3 DAA Command summary ..132

31.3.1 TPM setup ..132

31.3.2 JOIN...132

31.3.3 SIGN ..136

32. General Purpose IO ..139

33. Redirection...141

33.1 Actions to connect redirection to a GPIO channel142

34. Structure Versioning ..143

35. Certified Migration Key Type...144

35.1 Certified Migration Requirements...145

35.2 Key Creation..146

35.3 Migrate CMK to a MA...147

35.4 Migrate CMK to a MSA...148

36. Revoke Trust ..149
End of Introduction

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 1 of 150
 TCG PUBLISHED

1. Description
The design principles give the basic concepts of the TPM and generic information relative to TPM
functionality.

A TPM designer MUST review and implement the information in the TPM Main specification (parts 1-4) and
review the platform specific document for the intended platform. The platform specific document will
contain normative statements that affect the design and implementation of a TPM.

The question section keeps track of questions throughout the development of the specification and hence can
have information that is no longer current or moot. The purpose of the questions is to track the history of
various decisions in the specification to allow those following behind to gain some insight into the committees
thinking on various points.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 2 of 150
 TCG PUBLISHED

1.1 TODO (notes to keep the editor on track)

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 3 of 150
 TCG PUBLISHED

1.2 Questions
1. How to version the flag structures?

a. I suggest that we simply put the version into the structure and pass it back in the structure. Add the
version information into the persistent and volatile flag structures.

2. When using the encryption transport failures are easy to see. Also the watcher on the line can tell where
the error occurred. If the failure occurs at the transport level the response is an error (small packet) and
it is in the clear. If the error occurs during execution of the command then the response is a small
encrypted packet. Should we expand the packet size or simply let this go through?

a. Not an issue.

3. Do we restrict the loading of a counter to once per TPM_Startup(Clear)?

a. Yes once a counter is set it must remain the same until the next successful startup.

4. Does the time stamp work as a change on the tag or as a wrapped command like the transport protection.

a. While possibly easier at the HW level the tag mechanism seems to be harder at the SW level as to
what commands are sent to the TPM. The issue of how the SW presents the TS session to the SW
writer is not an issue. This is due to the fact that however the session is presented to the SW writer
the writer must take into account which commands are being time stamped and how to manage the
log etc. So accepting a mechanism that is easy for the HW developer and having the SW manage the
interface is a sufficient direction.

5. When returning time information do we return the entire time structure or just the time and have the
caller obtain all the information with a GetCap call?

a. All time returns will use the entire structure with all the details.

6. Do we want to return a real clock value or a value with some additional bits (like a monotonic value with
a time value)?

a. Add a count value into the time structure.

7. Do we need NTP or is SNTP sufficient?

a. The TPM will not run the time protocol itself. What the TPM will do is accept a value from outside
software and a hash of the protocols that produced the value. This allows the platform to use
whatever they want to set the value from secure time to the local PC clock.

8. Can an owner destroy a TPM by issuing repeated CreateCounter commands?

a. A TPM may place a throttle on this command to avoid burn issues. It MUST not be possible to burn out
the TPM counter under normal operating conditions. The CreateCounter command is limited to only
once per successful TPM_Startup(ST_CLEAR).

b. This answer is now somewhat moot as the command to createcounter is now owner authorized. This
allows the owner to decide when to authorize the counter creation. As there are only 4 counters
available it is not an issue with having the owner continue to authorize counters.

9. What happens to a transport session (log etc.) on an S3?

a. Should these be the same as the authorization sessions? The saving of a transport session across S3 is
not a security concern but is a memory concern. The TPM MUST clear the transport session on
TPM_Startup(CLEAR) and MAY clear the session on TPM_Startup(any).

10. While you can’t increment or create a new counter after startup can you read a counter other than the
active one?

a. You may read other counters

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 4 of 150
 TCG PUBLISHED

11. When we audit a command that is not authorized should we hash the parameters and provide that as part
of the audit event, currently they are set to null.

a. We should hash parameters of non-authorized commands

12. There is a fundamental problem with the encryption of commands in the transport and auditing. If we
cover a command we have no way to audit, if we show the command then it isn’t protected. Can we
expose the command (ordinal) and not the parameters?

a. If the owner has requested that a function be audited then the execute transport return will include
sufficient information to produce the audit entry.

13. How to set the time in the audit structure and tell the log what is going on.

a. The time in the audit structure is set to nulls except when audit occurs as part of a transport session.
In that case the audit command is set from the time value in the TPM.

14. Is there a limit to the number of locality modifiers?

a. Yes, the TPM need only support a maximum of 4 modifiers. The definition of the modifiers is always a
platform specific issue.

15. How do we evict various resources?

a. There are numerous eviction routines in the current spec. We will deprecate the various types and
move to TPM_Flushxxx for all resource types.

16. Can you flush a saved context?

a. Yes, you must be able to invalidate saved contexts. This would be done by making sure that the TPM
could not load any saved context.

17. What is the value of maintaining the clock value when the time is not incrementing? Can this be due to
the fact that the time is now known to be at least after the indicated time?

a. Moot point now as we don’t keep the clock value at

18. Should we change the current structures and add the tag?

a. TODO

19. Can we have a bank of bits (change bit locality) for each of the 4 levels of locality?

a. Now

20. How do we find out what sessions are active? Do we care?

a. I would say yes we care and we should use the same mechanism that we do for the keys. A GetCap
that will return the handles.

21. Can we limit the transport sessions to only one?

a. No, we should have as a minimum 2 sessions. One gets into deadlocks and such so the minimum
should be 2.

22. Does the TPM need to keep the audit structure or can it simply keep a hash?

a. The TPM just keeps the audit digest and no other information.

23. What happens to an OSAP session if the key associated with it is taken off chip with a "SaveContext"?
What happens if the key saveContext occurs after an OSAP auth context that is already off chip? How do
you later connect the key to the auth session (without having to store all sorts of things on chip)? Are we
really honestly convinced that we've thought of all the possible ramifications of saving and restoring auth
sessions? And is it really true that all the things we say about a saved auth session do/should apply to a
saved key (which is to say is there really a single loadContext command and a single context structure)?

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 5 of 150
 TCG PUBLISHED

a. Saved context a reliable indication of the linkage between the OSAP and the key. When saving save
auth then key, on load key then auth. Auth session checks for the key and if not found fails.

24. Why is addNonce an output of 16.5 loadContext?

a. If it's wrong, it's a little late to find out now - why not have it as an input and have the TPM return an
error if the encrypted addNonce doesn't match the input? The thought was that the nonce area might
not be a nonce but was information that the caller could put in. If they use it as a nonce fine, but
they could also use it as a label or sequence number or … any value the caller wanted

25. Is there a memory endurance problem with contextNonceSession?

a. contextNonceSession does not have to be saved across S3 states so there is no endurance problem.

26. Is there a memory endurance problem with contextNonceKey?

a. contextNonceKey only changes on TPM_Startup(ST_Clear) so it’s endurance is the same as a PCR.

27. The debate continues about restoring a resource’s handle during TPM_LoadContext.

a. Debate ends by having the load context be informed of what the loaders opinion is about the handle.
The requestor can indicate that it wishes the same handle and if the TPM can perform that task it
does, if it cannot then the load fails.

28. Interesting attack is now available with the new audit close flag on get audit signed. Anyone with access
to a signing key can close the audit log. The only requirement on the command is that the key be
authorized. While there is no loss of information (as the attacker can always destroy the external log)
does the closing of a log make things look different. This does enable a burn out attack. The ability to
closeAudit enables a new DenialOfService attack.

a. Resolution: The TPM Owner owns the audit process, so the TPM Owner should have exclusive control
over closeAudit. Hence the signing key used to closeAudit must be an AIK. Note that the owner can
choose to give this AIK’s authorization value to the OS, so that the OS can automatically close an
audit session during platform power down. But such operations are outside this specification.

29. Should we keep the E function in the tick counter?

a. From Graeme, I would prefer to see these calculations deleted. The calculation starts with one
assertion and derives a contradictory assertion. Generally, there seems little value in trying to derive
an equality relationship when nothing is known about the path to and from the Time Authority.

30. What is the difference between DIR_Quote and DirReadSigned?

a. Appears to be none so DIR_Quote deleted

31. The tickRate parameter associates tick with seconds and has no way to indicate that the rate is greater
than one second. Is this OK?

a. Do we need to allow for tick rates that are slower than once per second. We report in nanoseconds.

32. The TPM MUST support a minimum of 2 authorization sessions. Where do we put this requirement in the
spec?

33. Can we find a use for the DIR and BIT areas for locality 0?

a. They have no protections so in many ways they are just extra. We leave this as it is as locality 0 may
mean something else on a platform other than a PC.

34. How do we send back the transport log information on each execute transport?

a. It is 64 byes in length and would make things very difficult to include on every command. Change
wrappedaudit to be input params, add output parms and the caller has all information necessary to
create the structure to add into the digest.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 6 of 150
 TCG PUBLISHED

35. The transport log structure is a single structure used both for input and output with the only difference
being the setting of ticks to 0 on input and a real value on output, do we need two structures.

a. I believe that a single structure is fine

36. For TPM_Startup(ST_Clear) I added that all keys would be flushed. Is this right?

a. Yes

37. Why have 2 auths for release transport signed? It is an easy attack to simply kill the session.

a. The reason is that an attacker can close the session and get a signature of the session log. We are
currently not sure of the level of this attack but by having the creator of the session authorize the
signing of the log it is completely avoided.

38. 19.3 Action 3 (startup/state) doesn't reference the situation where there is no saved state. My
presumption is that you can still run startup/clear, but maybe you have to do a hardware reset?

a. DWG I don't think so. This could be an attack and a way to get the wrong PCR values into the system.
The BIOS is taking one path and may not set PCR values. Hence the response is to go into failed
selftest mode.

1.2.1 Delegation Questions
1. Is loading the table by untrusted process ok? Does this cause a problem when the new table is loaded and

permissions change?

a. Yes, the fill table can be done by any process. A TPM Owner wishing to validate the table can perform
the operations necessary to gain assurance of the table entries.

2. Are the permissions for a table row sensitive?

a. Currently we believe not but there are some attack models that knowing the permissions makes the
start of the attack easier. It does not make the success of the attack any easier. Example if I know
that a single process is the only process in the table that has the CreateAIK capability then the
attacker only attempts to break into the single process and not all others.

3. What software is in use to modify the table?

a. The table can be updated by any software or process given the capability to manage the table. Three
likely sources of the software would be a BIOS process, an applet of a trusted process and a
standalone self-booting (from CD-ROM) management application.

4. Who holds the TPM Owner password?

a. There is no change to the holding of the TPM Owner token. The permissions do allow the creation of
an application that sets the TPM Owner token to a random value and then seals the value to the
application.

5. How are these changes created such that there is minimal change to the current TPM?

a. This works by using the current authorization process and only making changes in the authorization
and not for each and every command.

6. What about S3 and other events?

a. Permissions, once granted, are non-volatile.

7. The permission bit to changeOwnerAuth (bit 11) gives rise to the functionality that the SW that has this
bit can control the TPM completely. This includes removing control from the TPM Owner as the TPM
Owner value will now be a random value only known to SW. There are use models where this is good and
bad, do we want this functionality?

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 7 of 150
 TCG PUBLISHED

8. Pros and cons of physical enable table when TPM Owner is present – Pro physically present user can make
SW play fair. Con – physically present user can override the desires of a TPM Owner.

9. Do we need to reset TPM_PERMISSION_KEY at some time?

a. We know that the key is NOT reset on TPM_ClearOwner.

10. What is the meaning of using permission table in an OIAP and OSAP mode?

a. Delegate table can be used in either OIAP or OSAP mode.

11. Can you grant permissions without assigning the permissions to a specific process?

a. Yes, do a SetRow with a PCR_SELECTION of null and the permissions are available to any process.

12. Do we need a ClearTableOwner?

a. I would assert that we do not need this command. The TPM Owner can perform SetRow with NULLS
four times and creates the exact same thing. Not having this command lowers the number of ordinals
the TPM is required to support.

13. There are some issues with the currently defined behavior of familyID and the verificationCount.

a. Talked to David for 30 mins. We decided that maxFamilyID is set to zero at manufacture, and
incremented for every FamTable_SetRow

b. It is the responsibility of DelTable_SetRow to set the appropriate familyID

c. DelTable_SetRow fails if the provided familyID is not active and present somewhere in the FamTable

d. FillTable works differently. It effectively resets the family table (invalidating all active rows) and
sets up as many rows as are needed based on the number of families specified in FillTable

e. This still needs a bit of work. Presumably the caller of FillTable uses a “fake” familyID, and this is
changed to the actual familyID when the fill happens

14. There are some issues with the verificationCount.

a. Uber-issue. If none of the rows in the table are allowed to create other rows and export them, then
the “sign” of the table is meaningful

b. If one of the rows is allowed to create and export new rows, is there any real meaning to “the
current set of exported rows?” (i.e. SW can just up and make new rows).

15. Should section 4.4, TPM_DelTable_ClearTable), section 4.5 (TPM_DelTable_SetEnable), and section 4.7
(TPM_DelTable_Set_Admin) all say “there must be UNAMBIGUOUS evidence of the presence of physical
access…” Is this okay?

a. Answer: No, group agreed to change UNAMBIGUOUS to BEST EFFORT in all three sections.

16. Is FamilyID a sensitive value?

a. If so, why? Agreement: FamilyID is not a sensitive value.

17. Should TPM_TakeOwnership be included in permissions bits (see bit 12 in section 3.1)?

a. Enables a better administrative monitor and may enable user to take ownership easier. Agreement
leave it in and change informative comments to reflect the reasons.

18. [From the TPM_DelTable_SetRow command informative comments]: Note that there are two types of
rights: family rights (you can either edit your family’s rows or grab new rows) and administrative rights.

a. This is really just an editor’s note, not a question to be resolved.

19. [From the TPM_DelTable_ExportRow command informational comments]:

a. Does not effect content of exported row left behind in the table;

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 8 of 150
 TCG PUBLISHED

b. Valid for all rows in the table;

c. Does not need to be OwnerAuth’d;

d. Family Rights are that family can only export a row from rows 0-3 if row belongs to the family, but
rows 4 and upwards can be exported by any Trusted Process, without any family checking being done.
This is really just an editor’s note, not a question to be resolved.

20. When a Family Table row is set, the verificationCount is set to 1, make sure that is consistently used in
all other command actions.

a. Done.

21. SetEnable and SetEnableOwner enable and disable all rows in a table, not just the rows belong to the
family of the process that used the SetEnable and/or SetEnableOwner commands. This is also true for
SetAdmin and SetAdminOwner. Can anybody come up with a use scenario where that causes any
problems?

22. In command actions where the TPM must walk the delegation table looking for a configuration that
matches the command input parameters (PCRinfo and/or authValues) and there are rows in the table
with duplicate values, what does the TPM do? Is there any reason not to use the rule “the TPM starts
walking the table starting with the first row and use the first row it finds with matching values”?

a. Answer to this question may mean change to pseudo code in section 2.3, Using the Authorization
Value, which currently shows the TPM walking the delegation table, starting with the first row, and
using the first row it finds with matching values.

23. What familyID value signals a family table row that is not in use/contains invalid values?

a. To get consistency in all the command Actions that use this, that FamilyID value has been edited in
all places to be NULL, instead of 0. Yes, FamilyID value of NULL signals a family table row that is not
in use or contains invalid values.

24. From section 2.4, Delegate Table Fill and Enablement: “The changing of a TPM Owner does not
automatically clear the delegate table. Changing a TPM Owner does disable all current delegations,
including exported rows, and requires the new TPM Owner to re-enable the delegations in the table. The
table entry values like trusted process identification and delegations to that process are not effected by a
change in owner. THE AUTHORIZATION VALUES DO NOT SURVIVE THE OWNERSHIP CHANGE.” Question: If
this is true, no delegations work after a change of owner. How does the new owner set new authorization
values?

a. The simple way of handling this is to get AdminMonitor to own backing up delegations at first owner
install and then be run by new owner, and AdminMonitor uses FillTable, to handle “Owner
migration.” Or, for another use option, is for second owner to pick-up PCR-ID’s and delegations bits
from previous owner – what is the most straight-forward way to do this?

25. In section 3.1 (Delegate Definitions bit map table), several commands that do not require owner
authorization are in the table and can be delegated: TPM_SetTempDeactivated (bit 15), TPM_ReadPubek
(bit 7), and TPM_LoadManuMaintPub (bit 3), Why?

26. In section 3.3 it is stated, “The Family ID resets to NULL on each change of TPM Owner.” This invalidates
all delegations. Is this what we want?

a. You don’t have to blow away FamilyID to blow away the blobs, because key is gone. So this is not
required – can eliminate these actions.

27. In section 3.12, why is TPM_DELEGATE_LABEL included in the table?

28. In section 4.2 (TPM_DelTable_FillTable), is it okay to delete requirement that delegate table be empty?
Also, in Action 14, now that we have both persistent and volatile tableAdmin flags, should this command
set volatile tableAdmin flag to FALSE upon completion?

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 9 of 150
 TCG PUBLISHED

a. The delegate table does not need to be empty to use the TPM_DelTable_FillTable command, Also, a
paragraph has been added to Informative comment for TPM_DelTable_FillTable that points out
usefulness of immediately following TPM_DelTable_FillTable with TPM_Delegate_TempSetAdmin, to
stop table administration in the current boot cycle.

29. In section 4.15 (TPM_FamTable_IncrementCount), why does this command require TPMOwner
authorization, as currently documented in section 4.15?

a. IncrementCount is gated by tableAdmin, which seems sufficient, and use of ownerauth makes it
difficult to automatically verify a table using a CDROM.

30. In section 4.3 (TPM_DelTable_FillTableOwner), in the Action 3d, use OTP[80] = MFG(x1) in place of
oneTimePad[n] = SHA1(x1 || seed[n]))?,

a. yes.

31. In section 4.9 (TPM_DelTable_SetRow), is invalidateRow input parameter really needed?

a. It is only used in action 5. Couldn’t action 5 simply read “Set N1 -> familyID = NULL”?

32. There is no easy way to generate a blob that can be used to delegate migration authority for a user key.

a. This is because the TPM does not store the migration authority on the chip as the migration command
involves an encrypted key, not a loaded one. One could invent a ‘CreateMigrationDelegationBlob’
that took the encrypted key as input and generated the encrypted delegation blob as output, but it
would not be pretty. Sorry Dave.

33. If a delegate row in NV memory (nominally 4 rows) is to refer to a user key (instead of owner auth), then
it needs to include a hash of the public key. It could be that the NV table is restricted to owner auth
delegations, this would save 80 bytes of NV store and also simplify the LoadBlob command.

a. Maybe would simplify other things. I would definitely NOT permit user keys in the table to be run with
the legacy OSAP and OIAP ordinals.

34. A few more GetCapability values are also required, the usual constants that we discussed and also the
two readTable caps.

35. TBD Verify that Delegate Table Management commands (see section 2.8) cover all the functionality of
obsolete or updated commands.

36. Redefine bits 16 and above in Delegation Definitions table (section 3.1). In particular, can new command
set (with TPM_FAMILY_OPERATION options as defined in section 3.20) be delegated individually and
appropriately. Also, how many user key authorized commands will be delegated?

37. Is new TPM_FAMILY_FLAGS field of family table (defined in section 3.5) sensitive data?

38. DSAP informative comment needs to be completed (section 4.1). In particular, does the statement “The
DSAP command works like OSAP except it takes an encrypted blob – an encrypted delegate table row --
as input” sufficient? Or do some particular differences between DSAP and OSAP have to be pointed out in
this informative comment??

39. The TPM_Delegate_LoadBlob[Owner] commands cannot be used to load key delegation blobs into the
TPM. Is another ordinal required to do that?

40. Is it okay for TPM_Delegate_LoadBlob[Owner] commands to ignore enable/disable use/admin flags in
family table rows?

41. Is it wise to delegate TPM_DelTable_ConvertBlob command (defined in section 4.11)? Does current
definition of this command support section 2.7 scenarios?

42. Is there a privacy problem with DelTable_ReadRow since the contents may not be identical from TPM to
TPM?

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 10 of 150
 TCG PUBLISHED

43. Are DSAP sessions being pooled with the other sessions? if so, can one save\load them by context
functions? if not, then there should be a restriction in saveContext.

a. DSAP are "normal" authorization sessions and would save/load with OIAP and OSAP sessions

1.2.2 NV Questions
1. You would set this by using a new ordinal that is unauthorized and only turns the flag on to lock

everything. Yet another ordinal? Do we need it? Is this an important functionality for the uses we see?

a. Yes this allows us to have "close" to writeonce functionality. What the functionality would be is that
the RTM would assure that the proper information is present in the TPM and then "lock" the area. One
could create this functionality by having the RTM change the authorization each time but then you
would need to eat more NV store so save the sealed authorization value. I think that is easier to have
an ordinal than eat the NV space and require a much more complex programming model.

2. Is it OK to have an element partially written?

a. Given that we have chunks there has to be a mechanism to allow partial writes.

3. If an element is partially written, how does a caller know that more needs to be written?

a. I would say the use model that provides the ability to write – read, in a loop is just not supported.
Get it all written and then do the read.

4. Usage of the lock bit: as you wrote, the RTM would assure that the proper information is present in the
TPM and then "lock" the area. so why in action #4 we should also check bWritten when the lock bit is
set? should be as action #3b of TPM_NV_DefineSpace, if lock is set - return error

a. [Grawrock, David] Not quite, the use model I was trying to create was the one where the TPM was
locked and the user was attempting to add a new area. If the locked bit doesn't allow for writing once
to a new area, one must reboot to perform the write and also tell the RTM what the value to write
must be. So this allows the creator of an area to write it once and then it flows with the locked bit.

5. Can you delete a NV value with only physical presence?

a. [Grawrock, David] You can't delete with physical presence, you must use owner authorization. This I
think is a reasonable restriction to avoid burn problems.

6. Why is there no check on the writes for a TPM Owner?

a. The check for an owner occurred during the TPM_NV_DefineSpace. It is imperative that the
TPM_NV_DefineSpace set in place the appropriate restrictions to limit the potential for attacks on the
NV storage area.

7. Description of maxNVBufSize is confusing to me. Why is this value related to the input size? And since
there is no longer any 'written' bits, why is there a maximum area size at all?

a. [Grawrock, David] This is a fixed size and set by the TPM manufacturer. I would see values like the
input buffer, transport sessions etc all coming up with the max size the TPM can handle. This does
NOT indicate what is available on the TPM right now. The TPM could have 4k of space but max size
would be 782 and would always report that number. If the available space fell to 20 bytes this value
would still be 782.

8. If the storage area is an opaque area to the TPM (as described), then how does the TPM know what PCR
registers have been used to seal a blob?

a. The VALUES of the area are opaque, the attributes to control access are not. So if the attributes
indicate that PCR restrictions are in place the TPM keeps those PCR values as part of the index
attributes. This in reality seals the value as there is no need for tpmProof since the value never
leaves the TPM.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 11 of 150
 TCG PUBLISHED

2. TPM Architecture

2.1 Interoperability
Start of informative comment:

The TPM must support a minimum set of algorithms and operations to meet TCG specifications.

Algorithms

RSA, SHA-1, HMAC

The algorithms and protocols are the minimum that the TPM must support. Additional algorithms and
protocols may be available to the TPM. All algorithms and protocols available in the TPM must be included in
the TPM and platform credential.

The reason to specify these algorithms is two fold. The first is to know and understand the security properties
of selected algorithms; identify appropriate key sizes and ensure appropriate use in protocols. The second
reason is to define a base level of algorithms for interoperability.

End of informative comment.

2.2 Components
Start of informative comment:

The following is a block diagram Figure 2:a shows the major components of a TPM.

Figure 2:a - TPM Component Architecture

End of informative comment.

2.2.1 Input and Output
Start of informative comment:

Key Generation

I/O

C2

Cryptographic Co-Processor C0

C1

Opt-In
Power Detection

RNG

Communication Bus

C7

C6

C4

HMAC Engine

SHA-1 Engine

Execution Engine

Volatile Memory

Non-Volatile Memory

C3

C8

C5

C10
C9

Rev 0.3

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 12 of 150
 TCG PUBLISHED

The I/O component, Figure 2:a C0, manages information flow over the communications bus. It performs
protocol encoding/decoding suitable for communication over external and internal buses. It routes messages
to appropriate components. The I/O component enforces access policies associated with the Opt-In
component as well as other TPM functions requiring access control.

The main specification does not require a specific I/O bus. Issues around a particular I/O bus are the purview
of a platform specific specification.

End of informative comment.

2.2.2 Cryptographic Co-Processor
Start of informative comment:

The cryptographic co-processor, Figure 2:a C1, implements cryptographic operations within the TPM. The TPM
employs conventional cryptographic operations in conventional ways. Those operations include the following:

Asymmetric key generation (RSA)

Asymmetric encryption/decryption (RSA)

Hashing (SHA-1)

Random number generation (RNG)

The TPM uses these capabilities to perform generation of random data, generation of asymmetric keys,
signing and confidentiality of stored data.

The TPM may symmetric encryption for internal TPM use but does not expose any symmetric algorithm
functions to general users of the TPM.

The TPM may implement additional asymmetric algorithms. TPM devices that implement different algorithms
may have different algorithms perform the signing and wrapping.

End of informative comment.

1. The TPM MAY implement other asymmetric algorithms such as DSA or elliptic curve.

a. These algorithms may be in use for wrapping, signatures and other operations. There is no guarantee
that these keys can migrate to other TPM devices or that other TPM devices will accept signatures
from these additional algorithms.

2. All Storage keys MUST be of strength equivalent to a 2048 bits RSA key or greater. The TPM SHALL NOT
load a Storage key whose strength less than that of a 2048 bits RSA key.

3. All AIK MUST be of strength equivalent to a 2048 bits RSA key, or greater.

2.2.2.1 RSA Engine
Start of informative comment:

The RSA asymmetric algorithm is used for digital signatures and for encryption.

For RSA keys the PKCS #1 standard provides the implementation details for digital signature, encryption and
data formats.

There is no requirement concerning how the RSA algorithm is to be implemented. TPM manufacturers may use
Chinese Remainder Theorem (CRT) implementations or any other method. Designers should review P1363 for
guidance on RSA implementations.

End of informative comment.

1. The TPM MUST support RSA.

2. The TPM MUST use the RSA algorithm for encryption and digital signatures.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 13 of 150
 TCG PUBLISHED

3. The TPM MUST support key sizes of 512, 768, 1024, and 2048 bits. The TPM MAY support other key sizes.

a. The minimum RECOMMENDED key size is 2048 bits.

4. The RSA public exponent MUST be e, where e = 216+1.

5. TPM devices that use CRT as the RSA implementation MUST provide protection and detection of failures
during the CRT process to avoid attacks on the private key.

2.2.2.2 Signature Operations
Start of informative comment:

The TPM performs signatures on both internal items and on requested external blobs. The rules for signatures
apply to both operations.

End of informative comment.

1. The TPM MUST use the RSA algorithm for signature operations where signed data is verified by entities
other than the TPM that performed the sign operation.

2. The TPM MAY use other asymmetric algorithms for signatures; however, there is no requirement that
other TPM devices either accept or verify those signatures.

3. The TPM MUST use P1363 for the format and design of the signature output.

2.2.2.3 Symmetric Encryption Engine
Start of informative comment:

The TPM uses symmetric encryption to encrypt authentication information, provide confidentiality in
transport sessions and provide internal encryption of blobs stored off of the TPM.

For authentication and transport sessions the mechanism is a Vernam one-time-pad with XOR. The pad being
generated from the nonces generated for the session use. Authentication information comes is 20 bytes the
same size as the nonces hence a direct XOR is possible.

For transport sessions the size of data is larger than the nonces so there needs to be a mechanism to expand
the entropy to the size of the data. The mechanism to expand the entropy is the MGF1 function from PKCS#1.
This function provides a known mechanism that does not lower the entropy of the nonces.

Internal protection of information can use any symmetric algorithm that the TPM designer feels provides the
proper level of protection.

The TPM does not expose any of the symmetric operations for general message encryption.

End of informative comment.

2.2.2.4 Using Keys
Start of Informative comments:

Keys can be symmetric or asymmetric.

As the TPM does not have an exposed symmetric algorithm, the TPM is only a generator, storage device and
protector of symmetric keys. Generation of the symmetric key would use the TPM RNG. Storage and
protection would be provided by the BIND and SEAL capabilities of the TPM. If the caller wants to ensure that
the release of a symmetric key is not exposed after UNBIND/UNSEAL on delivery to the caller, the caller
should use a transport session with confidentiality set.

For asymmetric algorithms, the TPM generates and operates on RSA keys. The keys can be held only by the
TPM or in conjunction with the caller of the TPM. If the private portion of a key is in use outside of the TPM it
is the responsibility of the caller and user of that key to ensure the protections of the key.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 14 of 150
 TCG PUBLISHED

The TPM has provisions to indicate if a key is held exclusively for the TPM or can be shared with entities off of
the TPM.

End of informative comments.

1. A secret key is a key that is a private asymmetric key or a symmetric key.

2. Data SHOULD NOT be used as a secret key by a TCG protected capability unless that data has been extant
only in a shielded location.

3. A key generated by a TCG protected capability SHALL NOT be used as a secret key unless that key has
been extant only in a shielded location.

4. A secret key obtained by a TCG protected capability from a Protected Storage blob SHALL be extant only
in a shielded location.

2.2.3 Key Generation
Start of informative comment:

The Key Generation component, Figure 2:a C2, creates RSA key pairs and symmetric keys. TCG places no
minimum requirements on key generation times for asymmetric or symmetric keys.

End of informative comment.

2.2.3.1 Asymmetric – RSA
The TPM MUST generate asymmetric key pairs. The generate function is a protected capability and the
private key is held in a shielded location. The implementation of the generate function MUST be in
accordance with P1363.

The prime-number testing for the RSA algorithm MUST use the definitions of P1363. If additional asymmetric
algorithms are available, they MUST use the definitions from P1363 for the underlying basis of the asymmetric
key (for example, elliptic curve fitting).

2.2.3.2 Nonce Creation
The creation of all nonce values MUST use the next n bits from the TPM RNG.

2.2.4 HMAC Engine
Start of informative comment:

The HMAC engine, Figure 2:a C3, provides two pieces of information to the TPM: proof of knowledge of the
authorization data and proof that the request arriving is authorized and has no modifications made to the
command in transit.

The HMAC definition is for the HMAC calculation only. It does not specify the order or mechanism that
transports the data from caller to actual TPM.

The creation of the HMAC is order dependent. Each command has specific items that are portions of the
HMAC calculation. The actual calculation starts with the definition from RFC 2104.

RFC 2104 requires the selection of two parameters to properly define the HMAC in use. These values are the
key length and the block size. This specification will use a key length of 20 bytes and a block size of 64 bytes.
These values are known in the RFC as K for the key length and B as the block size.

The basic construct is

 H(K XOR opad, H(K XOR ipad, text))

where

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 15 of 150
 TCG PUBLISHED

H = the SHA1 hash operation

K = the key or the authorization data

XOR = the xor operation

opad = the byte 0x5C repeated B times

B = the block length

ipad = the byte 0x36 repeated B times

text = the message information and any parameters from the command

End of informative comment.

The TPM MUST support the calculation of an HMAC according to RFC 2104.

The size of the key (K in RFC 2104) MUST be 20 bytes. The block size (B in RFC 2104) MUST be 64 bytes.

The order of the parameters is critical to the TPM’s ability to recreate the HMAC. Not all of the fields are
sent on the wire for each command for instance only one of the nonce values travels on the wire. Each
command interface definition indicates what parameters are involved in the HMAC calculation.

2.2.5 Random Number Generator
Start of informative comment:

The Random Number Generator (RNG) component, Figure 6:a C4 is the source of randomness in the TPM. The
TPM uses these random values for nonces, key generation and randomness in signatures.

The RNG consists of a state-machine that accepts and mixes unpredictable data and a post-processor that has
a one-way function (e.g. SHA-1). This architecture is chosen to provide a good source of random data without
requiring the TPM to include a genuine source of entropy – which can be expensive.

The state-machine has non-volatile state that is initialized with unpredictable random data during TPM
manufacturing before the parts are delivered to customers. The state-machine can accept, at any time,
further (unpredictable) data to salt the random number. Such salt-data may be provided by hardware or
software sources – for example; from thermal noise, or by monitoring random keyboard strokes or mouse
movements. Salt-data must be mixed every time a platform boots. Naturally, a hardware source is likely to
supply data at a higher baud rate than a software source. The salt-data is mixed into the existing state of the
machine and as a result improves the unpredictability of the state of the state-machine. Neither the Owner
of the TPM, nor the manufacturer of the TPM can deduce the state of the state-machine once the initial
random data is combined with the salt-data. The RNG post-processor is used to condense the output of the
state-machine into data that has sufficient and uniform entropy. The one-way function will use more bits of
input data than it produces as output.

Our definition of the RNG allows implementation of a Pseudo Random Number Generator (PRNG) algorithm.
However, on devices where a hardware source of entropy is available, a PRNG need not be implemented. This
specification refers to both RNG and PRNG implementations as the RNG mechanism. There is no need to
distinguish between the two at the TCG specification level.

The TPM should be able to provide 32 bytes of randomness on each call. Larger requests may fail with not
enough randomness being available.

End of informative comment.

1. The RNG for the TPM will consist of the following components:

a. Entropy source and collector

b. State register

c. Mixing function

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 16 of 150
 TCG PUBLISHED

2. The RNG capability is a TPM-protected capability with no access control.

3. The RNG output may or may not be shielded data. When the data is for internal use by the TPM (e.g.,
asymmetric key generation) the data MUST be held in a shielded location. When the data is for use by the
TSS or another external caller, the data is not shielded.

2.2.5.1 Entropy Source and Collector
Start of informative comment:

The entropy source is the process or processes that provide entropy. These types of sources could include
noise, clock variations, air movement, and other types of events.

The entropy collector is the process that collects the entropy, removes bias, and smoothes the output. The
collector differs from the mixing function in that the collector may have special code to handle any bias or
skewing of the raw entropy data. For instance, if the entropy source has a bias of creating 60 percent 1s and
only 40 percent 0s, then the collector design takes that bias into account before sending the information to
the state register.

End of informative comment.

1. The entropy source MUST provide entropy to the state register in a manner that provides entropy that is
not visible to an outside process.

a. For compliance purposes, the entropy source MAY be outside of the TPM; however, attention MUST be
paid to the reporting mechanism.

2. The entropy source MUST provide the information only to the state register.

a. The entropy source may provide information that has a bias, so the entropy collector must remove
the bias before updating the state register. The bias removal could use the mixing function or a
function specifically designed to handle the bias of the entropy source.

b. The entropy source can be a single device (such as hardware noise) or a combination of events (such
as disk timings). It is the responsibility of the entropy collector to update the state register whenever
the collector has additional entropy.

2.2.5.2 State Register
Start of informative comment:

The state register implementation may use two registers: a non-volatile register rngState and a volatile
register. The TPM loads the volatile register from the non-volatile register on startup. Each subsequent
change to the state register from either the entropy source or the mixing function affects the volatile state
register. The TPM saves the current value of the volatile state register to the non-volatile register on TPM
power-down. The TPM may update the non-volatile register at any other time. The reasons for using two
registers are:

To handle an implementation in which the non-volatile register is in a flash device;

To avoid overuse of the flash, as the number of writes to a flash device are limited.

End of informative comment.

1. The state register is in a TPM shielded-location.

a. The state register MUST be non-volatile.

b. The update function to the state register is a TPM protected-capability.

c. The primary input to the update function SHOULD be the entropy collector.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 17 of 150
 TCG PUBLISHED

2. If the current value of the state register is unknown, calls made to the update function with known data
MUST NOT result in the state register ending up in a state that an attacker could know.

a. This requirement implies that the addition of known data MUST NOT result in a decrease in the
entropy of the state register.

3. The TPM MUST NOT export the state register.

2.2.5.3 Mixing Function
Start of informative comment:

The mixing function takes the state register and produces output. The mixing function is a TPM protected-
capability. The mixing function takes the value from a state register and creates the RNG output. If the
entropy source has a bias, then the collector takes that bias into account before sending the information to
the state register.

End of informative comment.

1. Each use of the mixing function MUST affect the state register.

a. This requirement is to affect the volatile register and does not need to affect the non-volatile state
register.

2. RNG output MUST conform to the requirements for PRNG from FIPS 140-1.

2.2.5.4 RNG Reset
Start of informative comment:

The resetting of the RNG occurs at least in response to a loss of power to the device.

These tests prove only that the RNG is still operating properly; they do not prove how much entropy is in the
state register. This is why the self-test checks only after the load of previous state and may occur before the
addition of more entropy.

End of informative comment.

1. The RNG MUST NOT output any bits after a system reset until the following occurs:

a. The entropy collector performs an update on the state register. This does not include the adding of
the previous state but requires at least one bit of entropy.

b. The mixing function performs a self-test. This self-test MUST occur after the loading of the previous
state. It MAY occur before the entropy collector performs the first update.

2.2.6 SHA-1 Engine
Start of informative comment:

The SHA-1, Figure 2:a C5, hash capability is primarily used by the TPM, as it is a trusted implementation of a
hash algorithm. The hash interfaces are exposed outside the TPM to support Measurement taking during
platform boot phases and to allow environments that have limited capabilities access to a hash functions. The
TPM is not a cryptographic accelerator. TCG does not specify minimum throughput requirements for TPM hash
services.

End of informative comment.

1. The TPM MUST implement the SHA-1 hash algorithm as defined by FIPS-180-1.

2. The output of SHA-1 is 160 bits and all areas that expect a hash value are REQUIRED to support the full
160 bits.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 18 of 150
 TCG PUBLISHED

3. The only commands that SHALL be presented to the TPM in-between a TPM_SHA1Start command and a
TPM_SHA1Complete command SHALL be a variable number (possibly 0) of TPM_SHA1Update commands.

4. Throughout all parts of the specification the characters x1 || x2 imply the concatenation of x1 and x2

2.2.7 Power Detection
Start of informative comment:

The power detection component, Figure 2:a C6, manages the TPM power states in conjunction with platform
power states. TCG requires that the TPM be notified of all power state changes.

Power detection also supports physical presence assertions. The TPM may restrict command-execution
during periods when the operation of the platform is physically constrained. In a PC, operational constraints
occur during the power-on self-test (POST) and require Operator input via the keyboard. The TPM might allow
access to certain commands while in a constrained execution mode or boot state. At some critical point in
the POST process, the TPM may be notified of state changes that affect TPM command processing modes.

End of informative comment.

2.2.8 Opt-In
Start of informative comment:

The Opt-In component, Figure 2:a C7, provides mechanisms and protections to allow the TPM to be turned
on/off, enabled/disabled, activated/deactivated.. The Opt-In component maintains the state of persistent
and volatile flags and enforces the semantics associated with these flags.

The setting of flags requires either authorization by the TPM Owner or the assertion of physical presence at
the platform. The platform’s manufacturer determines the techniques used to represent physical-presence.
The guiding principle is that no remote entity should be able to change TPM status without either knowledge
of the TPM Owner or the Operator is physically present at the platform. Physical presence may be asserted
during a period when platform operation is constrained such as power-up.

Non-Volatile Flags:

PhysicalPresenceLifetimeLock

PhysicalPresenceHWEnable

PhysicalPresenceCMDEnable

Volatile Flags:

PhysicalPresenceV

The following truth table explains the conditions in which the PhysicalPresenceV flag may be altered:

Persistent / Volatile P P P V

Control Flags

Ph
ys

ica
lP

re
se

nc
eL

ife
tim

eL
oc

k

Ph
ys

ica
lP

re
se

nc
eH

W
En

ab
le

Ph
ys

ica
lP

re
se

nc
eC

MD
En

ab
le

Ph
ys

ica
lP

re
se

nc
eV

Volatile Access - F F - No access to PhysicalPresenceV flag.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 19 of 150
 TCG PUBLISHED

Persistent / Volatile P P P V

Control Flags

Ph
ys

ica
lP

re
se

nc
eL

ife
tim

eL
oc

k

Ph
ys

ica
lP

re
se

nc
eH

W
En

ab
le

Ph
ys

ica
lP

re
se

nc
eC

MD
En

ab
le

Ph
ys

ica
lP

re
se

nc
eV

- F T T

- - T F Access to PhysicalPresenceV flag through TCS_PhysicalPresence command enabled.

- T - - Access to PhysicalPresenceV flag through hardware signal enabled.

Semantics to
Physical Presence

Flag

- T T F Access to PhysicalPresenceV flag through hardware signal or TCS_PhysicalPresence command
enabled.

T F F -

T F T T
Access to PhysicalPresenceV flag permanently disabled.

T F T F Exclusive access to PhysicalPresenceV flag through TCS_PhysicalPresence command
permanently enabled.

T T F - Exclusive access to PhysicalPresenceV flag through hardware signal permanently enabled.

Persistent Access
Semantics to

Physical Presence
Flag

T T T F Access to PhysicalPresenceV flag through hardware signal or TCS_PhysicalPresence command
permanently enabled.

Table 2:a - Physical Presence Semantics

TCG also recognizes the concept of unambiguous physical presence. Conceptually, the use of dedicated
electrical hardware providing a trusted path to the Operator has higher precedence than the
physicalPresenceV flag value. Unambiguous physical presence may be used to override physicalPresenceV flag
value under conditions specified by platform specific design considerations.

Additional details relating to physical presence can be found in sections on Volatile and Non-volatile memory.

End of informative comment.

2.2.9 Execution Engine
Start of informative comment:

The execution engine, Figure 2:a C8, runs program code to execute the TPM commands received from the I/O
port. The execution engine is a vital component in ensuring that operations are properly segregated and
shield locations are protected.

End of informative comment.

2.2.10 Non-Volatile Memory
Start of informative comment:

Non-volatile memory component, Figure 2:a C9, is used to store persistent identity and state associated with
the TPM. The NV area has set items (like the EK) and also is available for allocation and use by entities
authorized by the TPM Owner.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 20 of 150
 TCG PUBLISHED

2.3 Data Integrity Register (DIR)
Start of informative comment:

The DIR were a version 1.1 function. They provided a place to store information using the TPM NV storage.

In 1.2 the DIR are deprecated and the use of the DIR should move to the general purpose NV storage area.

The TPM must still support the functionality of the DIR register in the NV storage area.

End of informative comment.

1. A TPM MUST provide one Data Integrity Register (DIR)

a. The TPM DIR commands are deprecated in 1.2

b. The TPM MUST reserve the space for one DIR in the NV storage area

c. The TPM MAY have more than 1 DIR.

2. The DIR MUST be 160-bit values and MUST be held in TPM shielded-locations.

3. The DIR MUST be non-volatile (values are maintained during the power-off state).

a. A TPM implementation need not provide the same number of DIRs as PCRs.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 21 of 150
 TCG PUBLISHED

2.4 Platform Configuration Register (PCR)
Start of informative comment:

A Platform Configuration Register (PCR) is a 160-bit storage location for discrete integrity measurements.
There are a minimum of 16 PCR registers. All PCR registers are shielded-locations and are inside of the TPM.
The decision of whether a PCR contains a standard measurement or if the PCR is available for general use is
deferred to the platform specific specification.

A large number of integrity metrics may be measured in a platform, and a particular integrity metric may
change with time and a new value may need to be stored. It is difficult to authenticate the source of
measurement of integrity metrics, and as a result a new value of an integrity metric cannot be permitted to
simply overwrite an existing value. (A rogue could erase an existing value that indicates subversion and
replace it with a benign value.) Thus, if values of integrity metrics are individually stored, and updates of
integrity metrics must be individually stored, it is difficult to place an upper bound on the size of memory
that is required to store integrity metrics.

The PCR is designed to hold an unlimited number of measurements in the register. It does this by using a
cryptographic hash and hashing all updates to a PCR. The pseudo code for this is:

 PCRi New = HASH (PCRi Old value || value to add)

There are two salient properties of cryptographic hash that relate to PCR construction. Ordering – meaning
updates to PCRs are not commutative. For example, measuring (A then B) is not the same as measuring (B
then A).

The other hash property is one-way-ness. This property means it should be computationally infeasible for an
attacker to determine the input message given a PCR value. Furthermore, subsequent updates to a PCR
cannot be determined without knowledge of the previous PCR values or all previous input messages provided
to a PCR register since the last reset.

End of informative comment.

1. The PCR MUST be a 160-bit field that holds a cumulatively updated hash value

2. The PCR MUST have a status field associated with it

3. The PCR MUST be in the RTS and should be in volatile storage

4. The PCR MUST allow for an unlimited number of measurements to be stored in the PCR

5. The PCR MUST preserve the ordering of measurements presented to it

6. A PCR MUST be set to the default value as specified by the PCRReset attribute

7. A TPM implementation MUST provide 16 or more independent PCRs. These PCRs are identified by index
and MUST be numbered from 0 (that is, PCR0 through PCR15 are required for TCG compliance). Vendors
MAY implement more registers for general-purpose use. Extra registers MUST be numbered contiguously
from 16 up to max – 1, where max is the maximum offered by the TPM.

8. The TCG-protected capabilities that expose and modify the PCRs use a 32-bit index, indicating the
maximum usable PCR index. However, TCG reserves register indices 230 and higher for later versions of
the specification. A TPM implementation MUST NOT provide registers with indices greater than or equal
to 230. In this specification, the following terminology is used (although this internal format is not
mandated).

9. The PSS MUST define at least define one measurement that the RTM MUST make and the PCR where the
measurement is stored.

10. A TCG measurement agent MAY discard a duplicate event instead of incorporating it in a PCR, provided
that:

11. A relevant TCG platform specification explicitly permits duplicates of this type of event to be discarded

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 22 of 150
 TCG PUBLISHED

12. The PCR already incorporates at least one event of this type

13. An event of this type previously incorporated into the PCR included a statement that duplicate such
events may be discarded. This option could be used where frequent recording of sleep states will
adversely affect the lifetime of a TPM, for example.

14. PCRs and the protected capabilities that operate upon them MAY NOT be used until power-on self-test
(TPM POST) has completed. If TPM POST fails, the TPM_Extend operation will fail; and, of greater
importance, the TPM_Quote operation and TPM_Seal operations that respectively report and examine the
PCR contents MUST fail. At the successful completion of TPM POST, all PCRs MUST be set to 0.
Additionally, the UINT32 flags MUST be set to zero.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 23 of 150
 TCG PUBLISHED

3. Endorsement Key Creation
Start of informative comment:

The TPM contains a 2048-bit RSA key pair called the endorsement key (EK). The public portion of the key is
the PUBEK and the private portion the PRIVEK. Due to the nature of this key pair, both the PUBEK and the
PRIVEK have privacy and security concerns.

The TPM has the EK generated before the end customer receives the platform. The entity that causes EK
generation is also the entity that will create a credential attesting to the validity of the TPM and the EK.

The TPM can generate the EK internally using the TPM_CreateEndorsementKey or by using an outside key
generator. The EK needs to indicate the genealogy of the EK generation.

Subsequent attempts to either generate an EK or insert an EK must fail.

If the data structure TPM_ENDORSEMENT_CREDENTIAL is stored on a platform after an Owner has taken
ownership of that platform, it SHALL exist only in storage to which access is controlled and is available to
authorized entities.

End of informative comment.

1. The EK MUST be a 2048-bit RSA key

a. The public portion of the key is the PUBEK

b. The private portion of the key is the PRIVEK

c. The PRIVEK SHALL exist only in a TPM-shielded location.

2. Access to the PRIVEK and PUBEK MUST only be via TPM protected capabilities

a. The protected capabilities MUST require TPM Owner authentication or operator physical presence

3. The generation of the EK may use a process external to the TPM and TPM_CreateEndorsementKey

a. The external generation MUST result in an EK that has the same properties as an internally generated
EK

b. The external generation process MUST protect the EK from exposure during the generation and
insertion of the EK

c. After insertion of the EK the TPM state MUST be the same as the result of the
TPM_CreateEndorsementKey execution

d. The process MUST guarantee correct generation, cryptographic strength, uniqueness, privacy, and
installation into a genuine TPM, of the EK

e. The entity that signs the EK credential MUST be satisfied that the generation process properly
generated the EK and inserted it into the TPM

f. The process MUST be defined in the target of evaluation (TOE) of the security target in use to
evaluate the TPM

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 24 of 150
 TCG PUBLISHED

3.1 Controlling Access to PRIVEK
Start of informative comment:

Exposure of the PRIVEK is a security concern.

The TPM must ensure that the PRIVEK is not exposed outside of the TPM

End of informative comment.

1. The PRIVEK MUST never be out of the control of a TPM shielded location

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 25 of 150
 TCG PUBLISHED

3.2 Controlling Access to PUBEK
Start of informative comment:

There are no security concerns with exposure or use of the PUBEK.

Privacy guidelines suggest that PUBEK could be considered personally identifiable information (PII) if it were
associated in some way with personal information (PI) or associated with other PII, but PUBEK alone cannot
be considered PII. Arbitrary random numbers do not represent a threat to privacy unless further associated
with PI or PII. The PUBEK is an arbitrary random number that may be associated with aggregate platform
information, but not personally identifiable information.

An EK may become associated with personally identifiable information when an alias platform identifier (AIK)
is also associated with PI. The attestation service could include personal information in the AIK credential,
thereby making the AIK-PUBEK association PII – but not before.

The association of PUBEK with AIK therefore is important to protect via privacy guidelines. The owner/user of
the TPM should be able to control whether PUBEK is disclosed along with AIK. The owner/user should be
notified of personal information that might be added to an AIK credential, which could result in AIK being
considered PII. The owner/user should be able to evaluate the mechanisms used by an attestation entity to
protect PUBEK-AIK associations before disclosure occurs. No other entity should be privy to owner/user
authorized disclosure besides the intended attestation entity.

Several commands may be used to negotiate the conditions of PUBEK-AIK disclosure. TPM_MakeIdentity
discloses PUBEK-AIK in the context of requesting an AIK credential. TPM_ActivateIdentity ensures the
owner/user has not been spoofed by an interloper. TPM_RecoverIdentity exposes the AIK credential for
publication. These interfaces allow the owner/user to choose whether disclosure is acceptable and control
the circumstances under which disclosure takes place. They do not allow the owner/user the ability to retain
control of PUBEK-AIK subsequent to disclosure except by traditional means of trusting the attestation entity
to abide by an acceptable privacy policy. The owner/user is able to associate the accepted privacy policy
with the disclosure operation (e.g. TPM_MakeIdentity).

A persistent flag called readPubek can be set to TRUE to permit reading of PUBEK via TPM_ReadPubek.
Reporting the PUBEK value is not considered privacy sensitive because it cannot be associated with any of the
AIK keys managed by the TPM without using TPM protected-capabilities.. Keys are encrypted with a nonce
when flushed from TPM shielded-locations, Cryptanalysis of flushed keys will not reveal an association of EK
to any AIK...

The command that manipulates the readPubek flag is TPM_disablePubekRead.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 26 of 150
 TCG PUBLISHED

4. Attestation Identity Keys
Start of informative comment:

The Attestation Identity Key (AIK) is an alias to the Endorsement Key (EK). The AIK is a 2048-bit RSA key.
Generation of an AIK can occur anytime after establishment of the TPM Owner. The TPM can generate a
virtually unlimited number of AIK.

The TPM Owner controls all aspects of the generation and activation of an AIK. The TPM Owner controls any
data associated with the AIK. The AIK credential may contain application specific information.

An AIK is a signature key and it signs information generated internally by the TPM. The data would include
PCR, other keys and TPM status information. The AIK is a substitute for the EK, which cannot perform
signatures for security reasons and cannot perform signatures due to privacy concerns.

AIK creation involves three TPM commands.

The TPM_MakeIdentity command causes the TPM to generate the AIK key pair. The command also discloses
the EK-AIK binding to the service that will issue the AIK credential.

The TPM_ActivateIdentity command unwraps a session key that allows for the decryption of the AIK
credential. The session key was encrypted using the PUBEK and requires the PRIVEK to perform the
decryption.

The TPM_RecoverIdentity allows for a subsequent recovery of the session key by again performing the
decryption using the PRIVEK.

Use of the AIK credential is outside of the control of the TPM.

The user of an AIK must prove knowledge of the 160-bit AIK authentication value to use the AIK.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 27 of 150
 TCG PUBLISHED

5. TPM Ownership
Start of informative comment:

Taking ownership of a TPM is the process of inserting a shared secret into a TPM shielded-location. Any entity
that knows the shared secret is a TPM Owner. Proof of ownership occurs when an entity, in response to a
challenge, proves knowledge of the shared secret. Certain operations in the TPM require authentication from
a TPM Owner.

Certain operations also allow the human, with physical possession of the platform, to assert TPM Ownership
rights. When asserting TPM Ownership, using physical presence, the operations must not expose any secrets
protected by the TPM.

The platform owner controls insertion of the shared secret into the TPM. The platform owner sets the NV
persistent flag ownershipEnabled that allows the execution of the TPM_TakeOwnership command. The
TPM_SetOwnerInstall, the command that controls the value ownershipEnabled, requires the assertion of
physical presence.

Attempting to execute TPM_TakeOwnership fails when a TPM already has an owner. To remove an owner
when the current TPM Owner is unable to remove themselves, the human that is in possession of the platform
asserts physical presence and executes TPM_ForceClear which removes the shared secret.

The insertion protocol that supplies the shared secret has the following requirements: confidentiality,
integrity, remoteness and verifiability.

To provide confidentiality the proposed TPM Owner encrypts the shared secret using the PUBEK. This requires
the PRIVEK to decrypt the value. As the PRIVEK is only available in the TPM the encrypted shared secret is
only available to the intended TPM.

The integrity of the process occurs by the TPM providing proof of the value of the shared secret inserted into
the TPM.

By using the confidentiality and integrity, the protocol is useable by TPM Owners that are remote to the
platform.

The new TPM Owner validates the insertion of the shared secret by using integrity response.

End of informative comment.

The TPM MUST ship with no Owner installed. The TPM MUST use the ownership-control protocol (OIAP or
OSAP)

5.1 Platform Ownership and Root of Trust for Storage
Start of informative comment:

The semantics of platform ownership are tied to the Root-of-trust-for-storage (RTS). The TPM_TakeOwnership
command creates a new Storage Root Key (SRK) and new TPMProof value whenever a new owner is
established. It follows that objects owned by a previous owner will not be inherited by the new owner.
Objects that should be inherited must be transferred by deliberate data migration actions.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 28 of 150
 TCG PUBLISHED

6. Authorization Data
Start of informative comment:

A wide-range of objects use authorization data. It is used to establish platform ownership, key use
restrictions, object migration and to apply access control to opaque objects protected by the TPM.

Authorization data is a 160-bit shared-secret plus high-entropy random number. The assumption is the
shared-secret and random number are mixed using SHA-1 digesting, but no specific function for generating
authorization data is specified by TCG.

TCG command processing sessions (e.g. OSAP, ADIP) may use authorization data as an initialization vector
when creating a one-time pad. Session encryption is used to encrypt portions of command messages
exchanged between TPM and a caller.

The TPM stores authorization data with TPM controlled-objects and in shielded-locations. Authorization data
is never in the clear, when managed by the TPM except in shielded-locations. Only TPM protected-capabilities
may access authorization data (contained in the TPM). Authorization data objects may not be used for any
other purpose besides authentication and authorization of TPM operations on controlled-objects.

Outside the TPM, a reference monitor of some kind is responsible for protecting authorization data.
Authorization data should be regarded as a controlled data item (CDI) in the context of the security model
governing the reference monitor. TCG expects this entity to preserve the interests of the platform Owner.

There is no requirement that instances of authorization data be unique.

End of informative comment.

The TPM MUST reserve 160 bits for the authorization data. The TPM treats the authorization data as a blob.
The TPM MUST keep authorization data in a shielded-location.

The TPM MUST enforce that the only usage in the TPM of the authorization data is to perform authorizations.

6.1 Dictionary Attack Considerations
Start of informative comment:

The approach taken by the TPM to protect against dictionary attack to gain unprivileged access to objects
managed by the TPM relies on TPM core services and management practice.

The TPM does not keep state across authorization attempts. Each attempt is independent of preceding
attempts. This independence means that failed attempts to authenticate one key are not known to any other
key (or TPM object) or itself – except during processing of the current attempt.

A typical countermeasure for dictionary attack is lockout or response degradation. These techniques require
the enforcement point to maintain state from previous failed attempts. If the TPM started degrading response
times after a failure threshold is reached, a long-lived TPM could become throttled unnecessarily. A basic
implementation approach might be to reboot/reset the TPM; which contradicts the goals of long-lived
execution scenarios.

An alternative approach might be to disable the TPM for a short time then resume normal operation.
However, the attacker can determine the latency period and resume attacks after the latency period has
elapsed. The attacker can then run at maximum attack rate until the next quantum. Meanwhile, the TPM is
not available for other authentication operations.

Furthermore these approaches could leave the TPM susceptible to manipulation by the caller. If performance
is degraded, but then reset after a successful authentication. The attacker merely performs a good
authorization and then proceeds with the dictionary attack.

More sophisticated implementation approaches would track failed attempts and keep timing information on a
per object basis. If a failure threshold is reached, the TPM would fail the request and set the timer. When the

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 29 of 150
 TCG PUBLISHED

timer fires, the TPM would reset the threshold and resume normal authentication behavior for that object.
However, implementation can be cost prohibitive.

Much can be done outside the TPM to prevent dictionary attacks. The TCG Cores Services component could
monitor authentication attempts and apply reasonable countermeasures. Administrative processes can dictate
an authorization data refresh schedule commensurate with the value of the protected assets.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 30 of 150
 TCG PUBLISHED

7. TPM Operation
Start of informative comment:

Through the course of TPM operation, it may enter several operational modes that include power-up, self-
test, administrative modes and full operation. This section describes TPM operational states and state
transition criteria. Where applicable, the TPM commands used to facilitate state transition or function are
included in diagrams and descriptions.

The TPM keeps the information relative to the TPM operational state in a combination of persistent and
volatile flags. For ease of reading the persistent flags are prefixed by pFlags and the volatile flags prefixed by
vFlags.

The following state diagram describes TPM operational states at a high level. Subsequent state diagrams drill-
down to finer detail that describes fundamental operations, protections on operations and the transitions
between them.

The state diagrams use the following notation:

CompositeState

 - Signifies a state.

 - Transitions between states are represented as a single headed arrows.

 - Circular transitions indicate operations that don’t result in a transition to another state.

 - Decision boxes split state flow based on a logical test. Decision conditions are called Guards and are
identified by bracketed text..

< [text] > Bracketed text indicates transitions that are gated. Text within the brackets describes the pre-
condition that must be met before state transition may occur.

< /name > Transitions may list the events that trigger state transition. The forward slash demarcates event
names.

 - The starting point for reading state diagrams.

 - The ending point for state diagrams. Perpetual state systems may not have an ending indicator.

 - The collection bar consolidates multiple identical transition events into a single transition
arrow.

 - The distribution bar splits transitions to flow into multiple states.

H
 - The history indicator means state values are remembered across context switches or power-cycles.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 31 of 150
 TCG PUBLISHED

7.1 TPM Initialization & Operation State Flow
Start of informative comment:

Figure 7:a - TPM Operational States

End of informative comment.

7.1.1 Initialization
Start of informative comment:

TPM_Init transitions the TPM from a power-off state to one where the TPM begins an initialization process.
TPM_Init could be the result of power being applied to the platform or a hard reset.

TPM_Init sets an internal flag to indicate that the TPM is undergoing initialization. The TPM must complete
initialization before it is operational. The completion of initialization requires the receipt of the TPM_Startup
command.

The TPM is not fully operational until all of the self-tests are complete. Successful completion of the self-
tests allows the TPM to enter fully operational mode.

Fully operational does not imply that all functions of the TPM are available. The TPM needs to have a TPM
Owner and be enabled for all functions to be available.

The TPM transitions out of the operational mode by having power removed from the system. Prior to the
exiting operational mode the TPM prepares for the transition by executing the TPM_SaveState command.
There is no requirement that SaveState execute before the transition to power-off mode occurs.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 32 of 150
 TCG PUBLISHED

7.2 Self-Test Modes
Start of informative comment:

Figure 7:b - Self-Test States

After initialization the TPM performs a limited self-test. This tests provides the assurance that a selected
subset of TPM commands will perform properly. The limited nature of the self-test allows the TPM to be
functional in as short of time as possible. The commands enabled by this self-test are:

TPM_SHA1xxx – Enabling the SHA-1 commands allows the TPM to assist the platform startup code. The startup
code may execute in a extremely constrained memory environment and having the TPM resources available to
perform hash functions can allow the measurement of code at an early time. While the hash is available there
is no speed requirements on the I/O bus to the TPM or on the TPM itself so use of this functionality may not
meet platform startup requirements.

TPM_Extend – Enabling the extend, and by reference the PCR, allows the startup code to perform
measurements. Extending could use the SHA-1 TPM commands or perform the hash using the main processor.

TPM_Startup – This command must be available as it is the transition command from the initial environment
to the fully operational state.

TPM_ContinueSelfTest – This command causes the TPM to complete the self-tests on all other TPM functions.
If TPM receives a command, and the self-test for that command has not been completed, the TPM will
automatically issue the TPM_ContinueSelfTest command.

The complete self-test ensures that all TPM functionality is available and functioning properly.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 33 of 150
 TCG PUBLISHED

End of informative comment.

1. At startup, a TPM MUST self-test all internal functions that are necessary to do TPM_SHA1Start,
TPM_SHA1Update, TPM_SHA1Complete, TPM_SHA1CompleteExtend, TPM_Extend, TPM_Startup,
TPM_ContinueSelfTest

2. The platform specific specification MUST define the maximum startup self-test time

7.2.1 Operational Self-Test
Start of informative comment:

The complete self-test is initiated by one of two events, TPM_ContinueSelfTest or TPM_SelfTestFull.

TPM_ContinueSelfTest is the command issued during platform initialization after the platform has made use
of the early command (perhaps for an early measurement) and the platform is now performing other
initializations and the TPM can be left alone to complete the self-tests. Before any command other than the
limited subset is executed the all self-tests must be complete.

TPM_SelfTestFull is a request to have the TPM perform another complete self-test. This test will take some
time but provides an accurate assessment of the TPM’s ability to perform all operations.

The TPM_ContinueSelfTest command causes the TPM to test the TPM internal functions that were not tested
at initialization. TPM_ContinueSelfTest is asynchronous. It returns a result code immediately before execution
starts. Unlike asynchronous callback, it does not return a result code when execution completes.
TPM_ContinueSelfTest runs automatically whenever untested capabilities exist. We envisage the TPM driver
software will be preprogrammed with estimates for TPM_ContinueSelfTest execution time. The estimate will
minimize polling for self-test completion. Other calls made to the TPM that would use TPM resources
occupied by executing self-tests would return a “busy” signal.

Upon the completion of the self-tests the result of the self-tests are held in the TPM such that a subsequent
call to TPM_GetTestResults returns the self-test result.

The TPM_CertifySelfTest command causes the TPM to do a full self-test and sign the result. It enables the
caller to verify that the self-test actually executed and trust the answer. It requires authorization to use a
signing key (i.e. AIK) inside the TPM. If the command fails for any reason, the command will not return a
signature. The lack of a signature field returning to a caller is in itself an indication that some part of the
process failed. The failure could be an attack against the signature or a failure in the TPM.

If self-tests fail, the TPM goes into failure state and does not allow most other operations to continue. The
TPM_GetTestResult command must be used to discover the failure code.

End of informative comment.

1. The TPM MUST provide startup self-tests. The TPM MUST provide mechanisms to allow the self-tests to be
run on demand. The response from the self-tests is pass or fail.

2. The TPM MUST complete the startup self-tests in a manner and timeliness that allows the TPM to be of
use to the BIOS during the collection of integrity metrics.

3. The TPM MUST complete the required checks before a given feature is in use. This requirement allows the
TPM to test the integrity metric storage and allow its use while simultaneously continuing to test the
signature engine.

4. There are two sections of startup self-tests: required and recommended. The recommended tests are not
a requirement due to timing constraints. The TPM manufacturer should perform as many tests as possible
in the time constraints.

5. The TPM MUST report the tests that it performs.

6. The TPM MUST provide a mechanism to allow self-test to execute on request by any challenger.

7. The TPM MUST provide for testing of some operations during each execution of the operation.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 34 of 150
 TCG PUBLISHED

8. The TPM MUST check the following:

a. RNG functionality

i. This test follows FIPS 140-1, which checks the functioning of an RNG.

b. Reading and extending the integrity registers. The self-test for the integrity registers will leave the
integrity registers in a known state.

c. Testing the EK integrity, if it exists

i. This requirement specifies that the TPM will verify that the endorsement key pair can sign and
verify a known value. This test also tests the RSA sign and verify engine. If the EK has not yet
been generated the TPM action is manufacturer specific.

d. The integrity of the protected capabilities of the TPM

i. This means that the TPM must ensure that its “microcode” has not changed, and not that a test
must be run on each function.

e. Any tamper-resistance markers

i. The tests on the tamper-resistance or tamper-evident markers are under programmable control.
There is no requirement to check tamper-evident tape or the status of epoxy surrounding the
case.

9. The TPM SHOULD check the following:

a. The hash functionality

i. This check will hash a known value and compare it to an expected result. There is no requirement
to accept external data to perform the check.

ii. The TPM MAY support a test using external data.

b. Any symmetric algorithms

i. This check will use known data with a random key to encrypt and decrypt the data

c. Any additional asymmetric algorithms

i. This check will use known data to encrypt and decrypt.

d. The key-wrapping mechanism

i. The TPM should wrap and unwrap a key. The TPM MUST NOT use the endorsement key pair for
this test.

e. Any other internal mechanisms

10. Self-Test Failure

a. When the TPM detects a failure during any self-test, the part experiencing the failure MUST enter a
shutdown mode. This shutdown mode will allow only the following operations to occur:

i. Update. The update function MAY replace invalid microcode, providing that the parts of the TPM
that provide update functionality have passed self-test.

ii. TPM_GetTestResult. This command can assist the TPM manufacturer in determining the cause of
the self-test failure.

iii. All other operations will return the error code TPM_FAILEDSELFTEST.

11. TSC commands do not operate on shielded-locations and have no requirement to be self-tested before
any use. TPM’s SHOULD test these functions before operation.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 35 of 150
 TCG PUBLISHED

12. If the functions used by a capability have not been tested, TPM_ContinueSelfTest is executed
automatically after that capability is called and before it is executed.

7.3 Startup
Start of informative comment:

Startup transitions the TPM from the initialization state to an operational state. The transition includes
information from the platform to inform the TPM of the platform operating state. TPM_Startup has three
options: Clear, State and Deactivated.

The Clear option informs the TPM that the platform is starting in a “cleared” state or most likely a complete
reboot. The TPM is to set itself to the default values and operational state specified by the TPM Owner.

The State option informs the TPM that the platform is requesting the TPM to recover a saved state and
continue operation from the saved state. The platform previously made the TPM_SaveState request to the
TPM such that the TPM prepares values to be recovered later.

The Deactivated state informs the TPM that it should not allow further operations and should fail all
subsequent command requests. The Deactivated state can only be reset by performing another TPM_Init.

End of informative comment.

7.4 Operational Mode
Start of informative comment:

After the TPM completes both TPM_Startup and self-tests, the TPM is ready for operation.

There are three discrete states, enabled or disabled, active or inactive and owned or unowned. These three
states when combined form eight operational modes.

Figure 7:c - Eight Modes of Operation

S1 is the fully operational state where all TPM functions are available. S8 represents a mode where all TPM
features (except those to change the state) are off.

Given the eight modes of operation, the TPM can be flexible in accommodating a wide range of usage
scenarios. The default delivery state for a TPM should be S8 (disabled, inactive and unowned). In S8, the only
mechanism available to move the TPM to S1 is having physical access to the platform.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 36 of 150
 TCG PUBLISHED

Two examples illustrate the possibilities of shipping combinations.

Example 1

The customer does not want the TPM to attest to any information relative to the platform. The customer does
not want any remote entity to attempt to change the control options that the platform owner is setting. For
this customer the platform manufacturer sets the TPM in S8 (disabled, deactivated and unowned).

To change the state of the platform the platform owner would assert physical presence and enable, activate
and insert the TPM Owner shared secret. The details of how to change the various modes is in subsequent
sections.

This particular sequence gives maximum control to the customer.

Example 2

A corporate customer wishes to have platforms shipped to their employees and the IT department wishes to
take control of the TPM remotely. To satisfy these needs the TPM should be in S5 (enabled, active and
unowned). When the platform connects to the corporate LAN the IT department would execute the
TPM_TakeOwnership command remotely.

This sequence allows the IT department to accept platforms into their network without having to have
physical access to each new machine.

End of informative comment.

The TPM MUST have commands to perform the following:

1. Enable and disable the TPM. These commands MUST work as TPM Owner authorized or with the assertion
of physical presence

2. Activate and deactivate the TPM. These commands MUST work as TPM Owner authorized or with the
assertion of physical presence

3. Activate and deactivate the ability to take ownership of the TPM

4. Assert ownership of the TPM.

7.4.1 Enabling a TPM
Informative comment

A disabled TPM is not able to execute commands that use the resources of a TPM. While some commands are
available (SHA-1 for example) the TPM is not able to load keys and perform TPM_Seal and other such
operations. These restrictions are the same as for an inactive TPM. The difference between inactive and
disabled is that a disabled TPM is unable to execute the TPM_TakeOwnership command. A disabled TPM that
has a TPM Owner is not able to execute normal TPM commands.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 37 of 150
 TCG PUBLISHED

pFlags.tpmDisabled contains the current enablement status. When set to TRUE the TPM is disabled, when
FALSE the TPM is enabled. This persistent flag

Changing the setting pFlags.tpmDisabled has no effect on any secrets or other values held by the TPM. No
keys, monotonic counters or other resources are invalidated by changing TPM enablement. There is no
guarantee that session resources (like transport sessions) survive the change in enablement, but there is no
loss of secrets.

The TPM_OwnerSetDisable command can be used to transition in either Enabled or Disabled states. The
desired state is a parameter to TPM_OwnerSetDisable. This command requires TPM Owner authentication to
operate. It is suitable for post-boot and remote invocation.

An unowned TPM requires the execution of TPM_PhysicalEnable to enable the TPM and TPM_PhysicalDisable
to disable the TPM. Operators of an owned TPM can also execute these two commands. The use of the
physical commands allows a platform operator to disable the TPM without TPM Owner authorization.

TPM_PhysicalEnable transitions the TPM from Disabled to Enabled state. This command is guarded by a
requirement of operator physical presence. Additionally, this command can be invoked by a physical event at
the platform, whether or not the TPM has an Owner or there is a human physically present. This command is
suitable for pre-boot invocation.

TPM_PhysicalDisable transitions the TPM from Enabled to Disabled state. It has the same guard and invocation
properties as TPM_PhysicalEnable.

The subset of commands the TPM is able to execute is defined in the structures document in the persistent
flag section.

Misuse of the disabled state can result in denial-of-service. Proper management of Owner-authorization-data
and physical access to the platform is a critical element in ensuring availability of the system.

End of informative comment.

1. The TPM MUST provide an enable and disable command that is executed with TPM Owner authorization.

2. The TPM MUST provide an enable and disable command this is executed locally using physical presence.

7.4.2 Activating a TPM
Informative comment

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 38 of 150
 TCG PUBLISHED

A deactivated TPM is not able to execute commands that use TPM resources. A major difference between
deactivated and disabled is that a deactivated TPM CAN execute the TPM_TakeOwnership command.

Activation control is with both persistent and volatile flags. The persistent flag is never directly checked by
the TPM, rather it is the source of the original setting for the volatile flag. During TPM initialization the value
of pFlags.tpmDeactivated is copied to vFlags.tpmDeactivated. When the TPM execution engine checks for
TPM activation, it only references vFlags.tpmDeactivated.

Toggling the state of pFlags.tpmDeactivated uses TPM_PhysicalSetDeactivated. This command requires
physical presence. There is no associated TPM Owner authenticated command as the TPM Owner can always
execute TPM_OwnerSetDisabled which results in the same TPM operations. The toggling of this flag does not
affect the current operation of the TPM but requires a reboot of the platform such that the persistent flag is
again copied to the volatile flag.

The volatile flag, vFlags.tpmDeactivated, is set during initialization by the value of pFlags.tpmDeactivated. If
vFlags.tpmDeactivated is TRUE the only way to reactivate the TPM is to reboot the platform and have pFlags
reset the vFlags value.

If vFlags is FALSE and the TPM running TPM_SetTempDeactivated will set vFlags.tpmDeactivated to TRUE and
then require a reboot of the platform to reactivate the platform.

Figure 7:d - Activated and Deactivated States

TPM activation is for Operator convenience. It allows the operator to deactivate the platform during a user
session when the operator does not want to disclose platform or attestation identity.

The subset of commands that are available when the TPM is deactivated is contained in the structures
document. The TPM_TakeOwnership command is available when deactivated.

End of informative comment.

1. The TPM MUST maintain a non-volatile flag that indicates the activation state

2. The TPM MUST provide for the setting of the non-volatile flag using a command that requires physical
presence

3. The TPM MUST sets a volatile flag using the current setting of the non-volatile flag.

4. The TPM MUST provide for a command that deactivates the TPM immediately

5. The only mechanism to reactivate a TPM once deactivated is to power-cycle the system.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 39 of 150
 TCG PUBLISHED

7.4.3 Taking TPM Ownership
Start of informative comment:

The owner of the TPM has ultimate control of the TPM. The owner of the TPM can enable or disable the TPM,
create AIK and set policies for the TPM. The process of taking ownership must be a tightly controlled process
with numerous checks and balances.

The protections around the taking of ownership include the enablement status, specific persistent flags and
the assertion of physical presence.

Control of the TPM revolves around knowledge of the TPM Owner authentication value. Proving knowledge of
authentication value proves the calling entity is the TPM Owner. It is possible for more than one entity to
know the TPM Owner authentication value.

The TPM provides no mechanisms to recover a lost TPM Owner authentication value.

Recovery from a lost or forgotten TPM Owner authentication value involves removing the old value and
installing a new one. The removal of the old value invalidates all information associated with the previous
value. Insertion of a new value can occur after the removal of the old value.

A disabled or inactive TPM that has no TPM Owner cannot install an owner.

To invalidate the TPM Owner authentication value use either TPM_OwnerClear or TPM_ForceClear.

End of informative comment.

1. The TPM Owner authentication value MUST be a 160-bits

2. The TPM Owner authentication value MUST be held in persistent storage

3. The TPM MUST have no mechanisms to recover a lost TPM Owner authentication value

7.4.3.1 Enabling Ownership
Informative comment

The state that a TPM must be in to allow for TPM_TakeOwnership to succeed is; enabled, active and
fFlags.OwnershipEnabled TRUE.

The following diagram shows the states and the operational checks the TPM makes before allowing the
insertion of the TPM Ownership value.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 40 of 150
 TCG PUBLISHED

The TPM checks the disabled flag and then the inactive flag. If the flags indicate enabled and active then the
TPM checks for the existence of a TPM Owner. If an Owner is not present the TPM then checks the
OwnershipDisabled flag. If TRUE the TPM_TakeOwnership command will execute.

While the TPM has no Owner but is enabled and active there is a limited subset of commands that will
successfully execute.

The TPM_SetOwnerInstall command toggles the state of the pFlags.OwnershipDisabled. TPM_SetOwnerInstall
requires the assertion of physical presence to execute.

End of informative comment.

7.4.4 Transitioning Between Operational States
Start of informative comment:

The following table is a recap of the commands necessary to transition a TPM from one state to another.

State TPM Owner Auth Physical Presence Persistence

Disabled to Enabled TPM_OwnerSetDisable TPM_PhysicalEnable permanent

Enabled to Disabled TPM_OwnerSetDisable TPM_PhysicalDisable permanent

Inactive to Active TPM_PhysicalSetDeactivated permanent

Active to Inactive TPM_PhysicalSetDeactivated permanent

Active to Inactive TPM_SetTempDeactivated boot cycle

End of informative comment.

7.5 Clearing the TPM
Start of informative comment:

Clearing the TPM is the process of returning the TPM to factory defaults. It is possible the platform owner will
change when in this state.

The commands to clear a TPM require either TPM Owner authentication or the assertion of physical presence.

The clear process performs the following tasks:

Invalidate the SRK. Once invalidated all information stored using the SRK is now unavailable. The invalidation
does not change the blobs using the SRK rather there is no way to decrypt the blobs after invalidation of the
SRK.

Invalidate tpmProof. tpmProof is a value that provides the uniqueness to values stored off of the TPM. By
invalidating tpmProof all off TPM blobs will no longer load on the TPM.

Invalidate the TPM Owner authentication value. With the authentication value invalidated there are no TPM
Owner authenticated commands that will execute.

Reset volatile and non-volatile data to manufacturer defaults.

The clear must not affect the EK.

Once cleared the TPM will return TPM_NOSRK to commands that require authentication.

The PCR values are undefined after a clear operation. The TPM must go through TPM_Init to properly set the
PCR values.

Clear authentication comes from either the TPM owner or the assertion of physical presence. As the clear
commands present a real opportunity for a denial of service attack there are mechanisms in place disabling
the clear commands.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 41 of 150
 TCG PUBLISHED

Disabling TPM_OwnerClear uses the TPM_DisableOwnerClear command. The state of ability to execute
TPM_OwnerClear is then held as one of the non-volatile flags.

Enablement of TPM_ForceClear is held in the volatile DisableForceClear flag. DisableForceClear is set to
FALSE during TPM_Init. To disable the command software should issue the TPM_DisableForceClear command.

During the TPM startup processing anyone with physical access to the machine can issue the TPM_ForceClear
command. This command performs the clear operations if it has not been disabled by
vFlags.DisabledForceClear being TRUE.

The TPM can be configured to block all forms of clear operations. It is advisable to block clear operations to
prevent an otherwise trivial denial-of-service attack. The assumption is the system startup code will issue the
TPM_DisableForceClear on each power-cycle after it is determined the TPM_ForceClear command will not be
necessary. The purpose of the TPM_ForceClear command is to recover from the state where the Owner has
lost or forgotten the TPM Owner-authentication-data.

The TPM_ForceClear must only be possible when the issuer has physical access to the platform. The
manufacturer of a platform determines the exact definition of physical access.

End of informative comment.

1. The TPM MUST support the clear operations.

a. Clear operations MUST be authenticated by either the TPM Owner or physical presence

b. The TPM MUST support mechanisms to disable the clear operations

2. The clear operation MUST perform at least the following actions

a. SRK invalidation

b. tpmProof invalidation

c. TPM Owner authentication value invalidation

d. Resetting non-volatile values to defaults

e. Invalidation of volatile values

f. Invalidation of internal resources

3. The clear operation must not affect the EK.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 42 of 150
 TCG PUBLISHED

8. Physical Presence
Start of informative comment:

This specification describes commands that require physical presence at the platform before the command
will operate. Physical presence implies direct interaction by a person – i.e. Operator with the platform / TPM.

The type of controls that imply special privilege include:

• Clearing an existing Owner from the TPM,

• Temporarily deactivating a TPM,

• Temporarily disabling a TPM.

Physical presence implies a level of control and authorization to perform basic administrative tasks and to
bootstrap management and access control mechanisms.

Protection of low-level administrative interfaces can be provided by physical and electrical methods; or by
software; or a combination of both. The guiding principle for designers is the protection mechanism should be
difficult or impossible to spoof by rogue software. Designers should take advantage of restricted states
inherent in platform operation. For example, in a PC, software executed during the power-on self-test (POST)
cannot be disturbed without physical access to the platform. Alternatively, a hardware switch indicating
physical presence is very difficult to circumvent by rogue software or remote attackers.

TPM and platform manufacturers will determine the actual implementation approach. The strength of the
protection mechanisms is determined by an evaluation of the platform.

Physical presence indication is implemented as a flag in volatile memory known as the PhysicalPresenceV
flag. When physical presence is established (TRUE) several TPM commands are able to function. They include:

TPM_PhysicalEnable,

TPM_PhysicalDisable,

TPM_PhysicalSetDeactivated,

TPM_ForceClear,

TPM_SetOwnerInstall,

In order to execute these commands, the TPM must obtain unambiguous assurance that the operation is
authorized by physical-presence at the platform. The command processor in the I/O component checks the
physicalPresenceV flag before continuing processing of TPM command blocks. The volatile physicalPresenceV
flag is set only while the Operator is indeed physically present.

TPM designers should take precautions to ensure testing of the physicalPresenceV flag value is not mask-able.
For example, a special bus cycle could be used or a dedicated line implemented.

There is an exception to physical presence semantics that allows a remote entity the ability to assert physical
presence when that entity is not physically present. The TSC_PhysicalPresence command is used to change
polarity of the physicalPresenceV flag. Its use is heavily guarded. See sections describing the TPM Opt-In
component; and Volatile and Non-volatile memory components.

The following diagram illustrates the flow of logic controlling updates to the physicalPresenceV flag:

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 43 of 150
 TCG PUBLISHED

AND

HW pin

physicalPresenceCMDEnable

physicalPresenceCMDEnableV
OR

physicalPresenceHWEnable

AND

TSC_PhysicalPresence()

PhysicalPresenceV
NOT

Rev 0.3

Figure 8:a - Physical Presence Control Logic

This diagram shows that the vFlags.physicalPresenceV flag may be updated by either a HW_Pin or through the
TSC_PhysicalPresence command, but gated by persistent control flags and a temporal lock. Observe, the
reverse logic surrounding the use of TSC_PhysicalPresence command. When the physicalPresenceCMDEnable
flag is set, and the physicalPresenceCMDEnableV is not set, and the TSCPhysicalPresence command may
execute.

The physicalPresenceV flag may be overridden by unambiguous physical presence. Conceptually, the use of
dedicated electrical hardware providing a trusted path to the Operator has higher precedence than the
physicalPresenceV flag value. Implementers should take this into consideration when implementing physical
presence indicators.

End of informative comment.

1. The requirement for physical presence MUST be met by the platform manufacturer using some physical
mechanism.

2. It SHALL be impossible to intercept or subvert indication of physical presence to the TPM by the
execution of software on the platform.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 44 of 150
 TCG PUBLISHED

9. Root of Trust for Reporting (RTR)
Start of informative comment:

The RTR is responsible for establishing platform identities, reporting platform configurations, protecting
reported values and establishing a context for attesting to reported values. The RTR shares responsibility of
protecting measurement digests with the RTS.

The interaction between the RTR and RTS is a critical component. The design and implementation of the
interaction between the RTR and RTS should mitigate observation and tampering with the messages. It is
strongly encouraged that the RTR and RTS implementation occur in the same package such there are no
external observation points. For a silicon based TPM this would imply that the RTR and RTS are in the same
silicon package with no external busses.

End of informative comment.

1. An instantiation of the RTS and RTR SHALL do the following:

a. Be resistant to all forms of software attack and to the forms of physical attack implied by the
platform’s Protection Profile

b. Supply an accurate digest of all sequences of presented integrity metrics

9.1 Platform Identity
Start of informative comment:

The RTR is a cryptographic identity in use to distinguish and authenticate an individual TPM. The TPM uses
the RTR to provide As the RTR is cryptographically unique the use of the RTR must only occur in controlled
circumstances.

In the TPM, the Endorsement Key (EK) is the RTR.

Prior to any use of the TPM, the RTR must be instantiated. Instantiation may occur during TPM manufacturing
or platform manufacturing. The business issues and manufacturing flow determines how a specific TPM and
platform is personalized.

The EK is cryptographically unique and bound to the TPM.

The EK is only available for two operations: establishing the TPM Owner and establishing Attestation Identity
Key (AIK) values and credentials. There is a prohibition on the use of the EK for any other operation.

End of informative comment.

1. The RTR MUST have a cryptographic identity.

a. The cryptographic identity of the RTR is the Endorsement Key (EK).

2. The EK MUST be

a. Statistically unique

b. Difficult to forge or counterfeit

c. Verifiable during the AIK creation process

3. The EK SHALL only participate in

a. TPM Ownership insertion

b. AIK creation and verification

9.2 RTR to Platform Binding
Start of informative comment:

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 45 of 150
 TCG PUBLISHED

When performing validation of the EK and the platform the challenger wishes to have knowledge of the
binding of RTR to platform. The RTR is bound to a TPM hence if the platform can show the binding of TPM to
platform the challenger can reasonably believe the RTR and platform binding.

The TPM cannot provide all of the information necessary for the challenger to trust in the binding. That
information comes from the manufacturing process and occurs outside the control of the TPM.

End of informative comment.

1. The EK is transitively bound to the Platform via the TPM as follows:

a. An EK is bound to one and only one TPM (i.e., there is a one to one correspondence between an
Endorsement Key and a TPM.)

b. A TPM is bound to one and only one Platform. (i.e., there is a one to one correspondence between a
TPM and a Platform.)

c. Therefore, an EK is bound to a Platform. (i.e., there is a one to one correspondence between an
Endorsement Key and a Platform.)

9.3 Platform Identity and Privacy Considerations
Start of informative comment:

The uniqueness property of cryptographic identities raises concerns that use of that identity could result in
aggregation of activity logs. Analysis of the aggregated activity could reveal personal information that a user
of a platform would not otherwise approve for distribution to the aggregators. Both EK and AIK identities have
this property.

To counter undesired aggregation, TCG encourages the use of domain specific AIK keys and restricts the use
of the EK key. The platform owner controls generation and distribution of AIK public keys.

If a digital signature was performed by the EK, then any entity could track the use of the EK. So use of the EK
as a signature is cryptographically sound, but this does not ensure privacy. Therefore a mechanism to allow
verifiers (human or machine) to determine that the TPM really signed the message without using the EK is
required.

End of informative comment.

9.4 Attestation Identity Keys
Start of informative comment:

An Attestation Identity Key (AIK) is an alias for the EK. AIK provide signatures and not encryption. The TPM
can create a virtually unlimited number of AIK.

The AIK must contain identification such that the TPM can properly enforce the restrictions placed on an AIK.

The AIK is an asymmetric key pair. For interoperability, the AIK is an RSA 2048-bit key. The TPM must protect
the private portion of the asymmetric key and ensure that the value is never exposed.

The AIK only signs PCR data. The TPM must enforce this restriction. If the AIK did sign additional information,
it is possible for an attacker to create a block of data that appears to be a PCR value. By enforcing the PCR
restriction this attack is never possible.

End of informative comment.

1. The TPM MUST permanently mark an AIK such that all subsequent uses of the AIK the AIK restrictions are
enforced.

2. An AIK MUST be:

a. Statistically unique

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 46 of 150
 TCG PUBLISHED

b. Difficult to forge or counterfeit

c. Verifiable to challengers

3. For interoperability the AIK MUST be

a. An RSA 2048-bit key

4. The AIK MUST only sign data generated by the TPM

9.4.1 AIK Creation
Start of informative comment:

As the AIK is an alias for the EK, the AIK creation process requires TPM Owner authorization. The process
actually requires two TPM Owner authorizations; creation and credential activation.

The credential creation process is outside the control of the TPM; however, the entity identification that will
create the credential must occur during the creation process.

End of informative comment.

1. The TPM Owner MUST authorize the AIK creation process.

2. The TPM MUST use a protected function to perform the AIK creation.

3. The TPM Owner MUST indicate the entity that will provide the AIK credential as part of the AIK creation
process.

4. The TPM Owner MAY indicate that NO credential will ever be created. If the TPM Owner does indicate
that no credential will be provided the TPM MUST ensure that no credential can be created.

5. The TTP MAY apply policies to determine if the presented AIK should be granted a credential.

6. The credential request package MUST be useable by only the TTP selected by the TPM Owner.

7. The AIK credential MUST be only obtainable by the TPM that created the AIK credential request.

9.4.2 AIK Storage
Start of informative comment:

The AIK may be stored on some general-purpose storage device.

When held outside of the TPM the AIK sensitive data must be encrypted and integrity protected.

End of informative comment.

1. When held outside of the TPM AIK encryption and integrity protection MUST protect the AIK sensitive
information

2. The migration of AIK from one TPM to another MUST be prohibited

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 47 of 150
 TCG PUBLISHED

10. Root of Trust for Storage (RTS)
Start of informative comment:

The RTS provides protection on data in use by the TPM but held in external storage devices. The RTS provides
confidentiality and integrity for the external blobs.

The RTS also provides the mechanism to ensure that the release of information only occurs in a named
environment. The naming of an environment uses the PCR selection to enumerate the values.

Data protected by the RTS can migrate to other TPM.

End of informative comment.

1. The number and size of values held by the RTS SHOULD be limited only by the volume of storage available
on the platform

2. The TPM MUST ensure that TPM_PERMANENT_DATA -> tpmProof is only inserted into TPM internally
generated and non-migratable information.

10.1 Loading and Unloading Blobs
Start of informative comment:

The TPM provides several commands to store and load RTS controlled data.

 Class Command Analog Comment

1 Data / Internal / TPM TPM_MakeIdentity TPM_ActivateIdentity Special purpose data

2 Data / External / TPM TSS_Bind TPM_Unbind

3 Data / Internal / PCR TPM_Seal TPM_Unseal

4 Data / External / PCR

5 Key / Internal / TPM TPM_CreateWrapKey TPM_LoadKey

6 Key / External / TPM TSS_WrapKey TPM_LoadKey

7 Key / Internal / PCR

8 Key / External / PCR TSS_WrapKeyToPcr TPM_LoadKey

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 48 of 150
 TCG PUBLISHED

11. Transport Sessions and Authorization Protocols
Start of informative comment:

The purpose of the authorization protocols and mechanisms is to prove to the TPM that the requestor has
permission to perform a function and use some object. The proof comes from the knowledge of a shared
secret.

Authorization data is available for the TPM Owner and each entity (keys, for example) that the TPM controls.
The authorization data for the TPM Owner and the SRK are held within the TPM itself and the authorization
data for other entities are held with the entity.

The TPM Owner authorization data allows the Owner to prove ownership of the TPM. Proving ownership of the
TPM does not immediately allow all operations – the TPM Owner is not a “super user” and additional
authorization data must be provided for each entity or operation that has protection.

The TPM treats knowledge of the authorization data as complete proof of ownership of the entity. No other
checks are necessary. The requestor (any entity that wishes to execute a command on the TPM or use a
specific entity) may have additional protections and requirements where he or she (or it) saves the
authorization data; however, the TPM places no additional requirements.

There are three protocols to securely pass a proof of knowledge of authorization data from requestor to TPM;
the “Object-Independent Authorization Protocol” (OIAP), the “Object-Specific Authorization Protocol” (OSAP)
and the “Delegate-Specific Authorization Protocol” (DSAP). The OIAP supports multiple authorization sessions
for arbitrary entities. The OSAP supports an authentication session for a single entity and enables the
confidential transmission of new authorization information. The DSAP supports the delegation of owner or
entity authorization.

New authorization information is inserted by the “Authorization Data Insertion Protocol” (ADIP) during the
creation of an entity. The “Authorization Data Change Protocol” (ADCP) and the “Asymmetric Authorization
Change Protocol” (AACP) allow the changing of the authorization data for an entity. The protocol definitions
allow expansion of protocol types to additional TCG required protocols and vendor specific protocols.

The protocols use a “rolling nonce” paradigm. This requires that a nonce from one side be in use only for a
message and its reply. For instance, the TPM would create a nonce and send that on a reply. The requestor
would receive that nonce and then include it in the next request. The TPM would validate that the correct
nonce was in the request and then create a new nonce for the reply. This mechanism is in place to prevent
replay attacks and man-in-the-middle attacks.

The basic protocols do not provide long-term protection of authorization data that is the hash of a password
or other low-entropy entities. The TPM designer and application writer must supply additional protocols if
protection of these types of data is necessary.

The design criterion of the protocols is to allow for ownership authentication, command and parameter
authentication and prevent replay and man-in-the-middle attacks.

The passing of the authorization data, nonces and other parameters must follow specific guidelines so that
commands coming from different computer architectures will interoperate properly.

End of informative comment.

1. Authorizations MUST use one of the following protocols

a. OIAP

b. OSAP

c. DSAP

2. Entity creation MUST use one of the following protocols

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 49 of 150
 TCG PUBLISHED

a. ADIP

3. Changing authorizations MUST use one of the following protocols

a. ADCP

b. AACP

4. The TPM MAY support additional protocols to authenticate, insert and change authorization data.

5. When a command has more than one authorization value

a. Each authorization MUST use the same SHA-1 of the parameters

6. Keys MAY specify AuthDataUsage -> TPM_AUTH_NEVER

a. If the caller changes the tag from TPM_TAG_RQU_AUTH1_xxx to TPM_TAG_RQU_XXX the TPM SHALL
ignore the authorization values

b. If the caller leaves the tag as TPM_TAG_RQU_AUTH1

i. The TPM will compute the authorization based on the value store in the authorization location
within the key, IGNORING the state of the AuthDataUsage flag.

c. Users may choose to use a well-known value for the authorization data when setting AuthDataUsage
to NEVER.

d. If a key has AuthDataUsage set to TPM_AUTH_ALWAYS but is received in a command with the tag
TPM_TAG_RQU_COMMAND, the command MUST return an error code.

7. For commands that normally have 2 authorization sessions, if the tag specifies only one in the parameter
array, then the first session listed is ignored (authDataUsage must be NEVER for this key) and the
incoming session data is used for the second auth session in the list.

8. Keys MAY specify AuthDataUsage -> TPM_AUTH_PRIV_USE_ONLY

a. If the key used in a command to read/access the public portion of the key (e.g. TPM_CertifyKey,
TPM_GetPubKey)

i. If the caller changes the tag from TPM_TAG_RQU_AUTH1_xxx to TPM_TAG_RQU_XXX the TPM
SHALL ignore the authorization values

ii. If the caller leaves the tag as TPM_TAG_RQU_AUTH1

iii. The TPM will compute the authorization based on the value store in the authorization location
within the key, IGNORING the state of the AuthDataUsage flag

b. else if the key used in command to read/access the private portion of the key(e.g. TPM_Sign)

i. If the tag is TPM_TAG_RQU_COMMAND, the command MUST return an error code.

11.1 Authorization Session Setup
Start of informative comment:

The TPM provides two protocols for authorizing the use of entities without revealing the authorization data
on the network or the connection to the TPM. In both cases, the protocol exchanges nonce-data so that both
sides of the transaction can compute a hash using shared secrets and nonce-data. Each side generates the
hash value and can compare to the value transmitted. Network listeners cannot directly infer the
authorization data from the hashed objects sent over the network.

The first protocol is the Object-Independent Authorization Protocol (OIAP), which allows the exchange of
nonces with a specific TPM. Once an OIAP session is established, its nonces can be used to authorize the use
of any entity managed by the TPM. The session can live indefinitely until either party requests the session
termination. The TPM_OIAP function starts the OIAP session.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 50 of 150
 TCG PUBLISHED

The second protocol is the Object Specific Authorization Protocol (OSAP)”. The OSAP allows establishment of
an authentication session for a single entity. The session creates nonces that can authorize multiple
commands without additional session-establishment overhead, but is bound to a specific entity. The
TPM_OSAP command starts the OSAP session. The TPM_OSAP specifies the entity to which the authorization is
bound.

Most commands allow either form of authorization protocol. In general, however, the OIAP is preferred – it is
more generally useful because it allows usage of the same session to provide authorization for different
entities. The OSAP is, however, necessary for operations that set or reset authorization data.

OIAP sessions were designed for reasons of efficiency; only one setup process is required for potentially many
authorizations.

An OSAP session is doubly efficient because only one setup process is required for potentially many
authorization calculations and the entity authorization secret is required only once. This minimizes exposure
of the authorization secret and can minimize human interaction in the case where a person supplies the
authorization information. The disadvantage of the OSAP is that a distinct session needs to be setup for each
entity that requires authorization. The OSAP creates an ephemeral secret that is used throughout the session
instead of the entity authorization secret. The ephemeral secret can be used to provide confidentiality for
the introduction of new authorization data during the creation of new entities. Termination of the OSAP
occurs in two ways. Either side can request session termination (as usual) but the TPM forces the termination
of an OSAP session after use of the ephemeral secret for the introduction of new authorization data.

For both the OSAP and the OIAP, session setup is independent of the commands that are authorized. In the
case of OIAP, the requestor sends the TPM_OIAP command, and with the response generated by the TPM, can
immediately begin authorizing object actions. The OSAP is very similar, and starts with the requestor sending
a TPM_OSAP operation, naming the entity to which the authorization session should be bound.

The DSAP session is to provide delegated authorization information.

All session types use a “rolling nonce” paradigm. This means that the TPM creates a new nonce value each
time the TPM receives a command using the session.

Example OIAP and OSAP sessions are used to illustrate session setup and use. The fictitious command named
TPM_Example occupies the place where an ordinary TPM command might be used, but does not have
command specific parameters. The session connects to a key object within the TPM. The key contains
authorization-data that will be used to secure the session.

There could be as many as 2 authorization sessions applied to the execution of a single TPM command or as
few as 0. The number of sessions used is determined by TCG 1.2 Command Specification and is indicated by
the command ordinal parameter.

It is also possible to secure authorization sessions using ephemeral shared-secrets. Rather than using
authorization-data contained in the stored object (e.g. key), the authorization-data is supplied as a
parameter to OIAP or OSAP session creation. In the examples below the key.usageAuth parameter is replaced
by the ephemeral secret.

End of informative comment.

11.2 Parameter Declarations for OIAP and OSAP Examples
Start of informative comment:

To follow OIAP and OSAP protocol examples (Error! Reference source not found., Error! Reference source
not found., Table 11:c and Table 11:d), the reader should become familiar with the parameters declared in
Table 11:a and Table 11:b.

Several conventions are used in the parameter tables that may facilitate readability. The Param column
(Table 11:a) identifies the sequence in which parameters are packaged into a command message as well as
the size in bytes of the parameter value. The HMAC column identifies the parameters that are included in

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 51 of 150
 TCG PUBLISHED

HMAC calculations including size. The Type column identifies the TCG data type corresponding to the passed
value. An encapsulation of the parameter type is not part of the command message. The Name column is a
fictitious variable names that aid in following the examples and descriptions.

The double-lined row separator distinguishes authorization session parameters from command parameters. In
Table 11:a the TPM_Example command has three parameters; keyHandle, inArgOne and inArgTwo. The tag,
paramSize and ordinal parameters are message header values describing contents of a command message.
The parameters below the double-lined row are OIAP / OSAP authorization session related. If a second
authorization session were used, the table would show a second authorization section delineated by a second
double-lined row. The authorization session parameters identify shared-secret values, session nonces, session
digest and flags.

In this example, a single authorization session is used signaled by the TPM_TAG_RQU_AUTH1_COMMAND tag.

Param HMAC

Sz # Sz
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_Example

4 4 TPM_KEY_HANDLE keyHandle Handle of a loaded key.

5 1 2S 1 BOOL inArgOne The first input argument

6 20 3S 20 UNIT32 inArgTwo The second input argument.

7 4 TPM_AUTHHANDLE authHandle The authorization handle used for keyHandle authorization.

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by TPM to cover inputs

8 20 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4 H1 1 BOOL continueAuthSession The continue use flag for the authorization handle

1
0 20 TPM_AUTHDATA inAuth The authorization digest for inputs and keyHandle. HMAC key:

key.usageAuth.

Table 11:a - Authorization Protocol Input Parameters

Param HMAC

Sz # Sz
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RSP_AUTH1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation. See section 4.3.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal, fixed value of TPM_Example

4 4 3S 4 UINT32 outArgOne Output argument

5 20 2 H1 20 TPM_NONCE nonceEven Even nonce newly generated by TPM to cover outputs

 3 H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4 H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth The authorization digest for the returned parameters. HMAC key:
key.usageAuth.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 52 of 150
 TCG PUBLISHED

Table 11:b - Authorization Protocol Output Parameters

End of informative comment.

11.2.1 Object-Independent Authorization Protocol (OIAP)
Start of informative comment:

The purpose of this section is to describe the authorization-related actions of a TPM when it receives a
command that has been authorized with the OIAP protocol. OIAP uses the TPM_OIAP command to create the
authorization session.

Many commands use OIAP authorization. The following description is therefore necessarily abstract. A
fictitious TPM command, TPM_Example is used to represent ordinary TPM commands.

Assume that a TPM user wishes to send command TPM_Example. This is an authorized command that uses the
key denoted by keyHandle. The user must know the authorization data for keyHandle (key.usageAuth) as this
is the entity that requires authorization and this secret is used in the authorization calculation. Let us assume
for this example that the caller of TPM_Example does not need to authorize the use of keyHandle for more
than one command. This use model points to the selection of the OIAP as the authorization protocol.

For the TPM_Example command, the inAuth parameter provides the authorization to execute the command.
The following table shows the commands executed, the parameters created and the wire formats of all of the
information.

<inParamDigest> is the result of the following calculation: SHA1(ordinal, inArgOne, inArgTwo).
<outParamDigest> is the result of the following calculation: SHA1(returnCode, ordinal, outArgOne).
inAuthSetupParams refers to the following parameters, in this order: auth Handle, authLastNonceEven,
nonceOdd, continueAuthSession. OutAuthSetupParams refers to the following parameters, in this order: auth
Handle, nonceEven, nonceOdd, continueAuthSession

There are two even nonces used to execute TPM_Example, the one generated as part of the TPM_OAIP
command (labeled authLastNonceEven below) and the one generated with the output arguments of
TPM_Example (labeled as nonceEven below).

Caller On the wire Dir TPM

Send TPM_OIAP TPM_OIAP Create session

Create authHangle

Associate session and authHandle

Generate authLastNonceEven

Save authLastNonceEven with authHandle

Save authHandle, authLastNonceEven authHandle,
authLastNonceEven

 Returns

Generate nonceOdd

Compute inAuth = HMAC
(key.usageAuth, inParamDigest,
inAuthSetupParams)

Save nonceOdd with authHandle

Send TPM_Example tag

paramSize

ordinal

inArgOne

 TPM retrieves key.usageAuth (key must have been previously loaded)

Verify authHandle points to a valid session, mismatch returns
TPM_E_INVALIDAUTH

Retrieve authLastNonceEven from internal session storage

HM = HMAC (key.usageAuth, inParamDigest, inAuthSetupParams)

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 53 of 150
 TCG PUBLISHED

inArgTwo

authHandle

nonceOdd

continueAuthSession

inAuth

Compare HM to inAuth. If they do not compare return with
TPM_E_INVALIDAUTH

Execute TPM_Example and create returnCode

Generate nonceEven to replace authLastNonceEven in session

Set resAuth = HMAC(key.usageAuth, outParamDigest,
outAuthSetupParams)

Save nonceEven

HM = HMAC(key.usageAuth,
outParamDigest, outAuthSetupParams)

Compare HM to resAuth. This verifies
returnCode and output parameters.

tag

paramSize

returnCode

outArgOne

nonceEven

continueAuthSession

resAuth

 Return output parameters

If continueAuthSession is FALSE then destroy session

Suppose now that the TPM user wishes to send another command using the same session. For the purposes of
this example, we will assume that the same example command is used (ordinal = TPM_Example). However, a
different key (newKey) with its own secret (newKey.usageAuth) is to be operated on. To re-use the previous
session, the continueAuthSession output boolean must be TRUE.

In Error! Reference source not found. shows the command execution reusing an existing authorization
session. The parameters created and the wire formats of all of the information.

In this case, authLastNonceEven is the nonceEven value returned by the TPM with the output parameters
from the first protocol example - Error! Reference source not found..

Caller On the wire Dir TPM

Generate nonceOdd

Compute inAuth = HMAC
(newKey.usageAuth, inParamDigest,
inAuthSetupParams)

Save nonceOdd with authHandle

Send TPM_Example tag

paramSize

ordinal

inArgOne

inArgTwo

nonceOdd

continueAuthSession

inAuth

 TPM retrieves newKey.usageAuth (newKey must have been
previously loaded)

Retrieve authLastNonceEven from internal session storage

HM = HMAC (newKey.usageAuth, inParamDigest,
inAuthSetupParams)

Compare HM to inAuth. If they do not compare return with
TPM_E_INVALIDAUTH

Execute TPM_Example and create returnCode

Generate nonceEven to replace authLastNonceEven in session

Set resAuth = HMAC(newKey.usageAuth, outParamDigest,
outAuthSetupParams)

Save nonceEven

HM = HMAC(newKey.usageAuth,
outParamDigest, outAuthSetupParams)

Compare HM to resAuth. This verifies
returnCode and output parameters.

tag

paramSize

returnCode

outArgOne

nonceEven

continueAuthSession

 Return output parameters

If continueAuthSession is FALSE then destroy session

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 54 of 150
 TCG PUBLISHED

resAuth

The TPM user could then use the session for further authorization sessions. Suppose, however, that the TPM
user no longer requires the authorization session. There are three possibilities in this case:

The user issues a TPM_Terminate_Handle command to the TPM (section 5.3).

The input argument continueAuthSession can be set to FALSE for the last command. In this case, the output
continueAuthSession value will be FALSE.

In some cases, the TPM automatically terminates the authorization session regardless of the input value of
continueAuthSession. In this case as well, the output continueAuthSession value will be FALSE.

When an authorization session is terminated for any reason, the TPM invalidates the session’s handle and
terminates the session’s thread (releases all resources allocated to the session).

End of informative comment.

OIAP Actions

1. The TPM MUST verify that the authorization handle (H, say) referenced in the command points to a valid
session. If it does not, the TPM returns the error code TPM_INVALID_AUTHHANDLE

2. The TPM SHALL retrieve the latest version of the caller’s nonce (nonceOdd) and continueAuthSession flag
from the input parameter list, and store it in internal TPM memory with the authSession ‘H’.

3. The TPM SHALL retrieve the latest version of the TPM’s nonce stored with the authorization session H
(authLastNonceEven) computed during the previously executed command.

4. The TPM MUST retrieve the secret authorization data (SecretE, say) of the target entity. The entity and
its secret must have been previously loaded into the TPM.

5. The TPM SHALL perform a HMAC calculation using the entity secret data, ordinal, input command
parameters and authorization parameters according to previously specified normative regarding HMAC
calculation.

6. The TPM SHALL compare HM to the authorization value received in the input parameters. If they are
different, the TPM returns the error code TPM_AUTHFAIL if the authorization session is the first session of
a command, or TPM_AUTH2FAIL if the authorization session is the second session of a command.
Otherwise, the TPM executes the command which (for this example) produces an output that requires
authentication.

7. The TPM SHALL generate a nonce (nonceEven).

8. The TPM creates an HMAC digest to authenticate the return code, return values and authorization
parameters to the same entity secret according to previously specified normative regarding HMAC
calculation.

9. The TPM returns the return code, output parameters, authorization parameters and authorization digest.

10. If the output continueUse flag is FALSE, then the TPM SHALL terminate the session. Future references to
H will return an error.

11.3 Object-Specific Authorization Protocol (OSAP)
Start of informative comment:

This section describes the actions of a TPM when it receives a TPM command via OSAP session. Many TPM
commands may be sent to the TPM via an OSAP session. Therefore, the following description is necessarily
abstract.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 55 of 150
 TCG PUBLISHED

The OSAP session is initialized through the creation of an ephemeral secret which is used to protect session
traffic. Sessions are created using the TPM_Osap command. This section illustrates OSAP using a fictitious
command called TPM_Example.

Assume that a TPM user wishes to send the TPM_Example command to the TPM. The keyHandle signifies that
an OSAP session is being used and has the value “Auth1”. The user must know the authorization-data for
keyHandle (key.usageAuth) as this is the entity that requires authorization and this secret is used in the
authorization calculation.

Let us assume that the sender needs to use this key multiple times but does not wish to obtain the key secret
more than once. This might be the case if the usage authorization data were derived from a typed password.
This use model points to the selection of the OSAP as the authorization protocol.

For the TPM_Example command, the inAuth parameter provides the authorization to execute the command.
The following table shows the commands executed, the parameters created and the wire formats of all of the
information.

<inParamDigest> is the result of the following calculation: SHA1(ordinal, inArgOne, inArgTwo).
<outParamDigest> is the result of the following calculation: SHA1(returnCode, ordinal, outArgOne).
inAuthSetupParams refers to the following parameters, in this order: authLastNonceEven, nonceOdd,
continueAuthSession. OutAuthSetupParams refers to the following parameters, in this order: nonceEven,
nonceOdd, continueAuthSession

In addition to the two even nonces generated by the TPM (authLastNonceEven and nonceEven) that are used
for TPM_OIAP, there is a third, labeled nonceEvenOSAP that is used to generate the shared secret. For every
even nonce, there is also an odd nonce generated by the system.

Caller On the wire Dir TPM

Send TPM_OSAP TPM_OSAP

keyHandle

nonceOddOSAP

 Create session & authHangle

Generate authLastNonceEven

Save authLastNonceEven with authHandle

Generate nonceEvenOSAP

Generate sharedSecret = HMAC(key.usageAuth, nonceEvenOSAP,
nonceOddOSAP)

Save keyHandle, sharedSecret with authHandle

Save authHandle, authLastNonceEven

Generate sharedSecret =
HMAC(key.usageAuth, nonceEvenOSAP,
nonceOddOSAP)

Save sharedSecret

authHandle,
authLastNonceEven

nonceEvenOSAP

 Returns

Generate nonceOdd & save with
authHandle.

Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

Send TPM_Example tag

paramSize

ordinal

inArgOne

inArgTwo

authHandle

nonceOdd

 Verify authHandle points to a valid session, mismatch returns
TPM_AUTHFAIL

Retrieve authLastNonceEven from internal session storage

HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)

Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL

Execute TPM_Example and create returnCode

Generate nonceEven to replace authLastNonceEven in session

Set resAuth = HMAC(sharedSecret, outParamDigest,

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 56 of 150
 TCG PUBLISHED

continueAuthSession

inAuth

outAuthSetupParams)

Save nonceEven

HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)

Compare HM to resAuth. This verifies
returnCode and output parameters.

tag

paramSize

returnCode

outArgOne

nonceEven

continueAuthSession

resAuth

 Return output parameters

If continueAuthSession is FALSE then destroy session

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 57 of 150
 TCG PUBLISHED

Table 11:c - Example OSAP Session

Suppose now that the TPM user wishes to send another command using the same session to operate on
the same key. For the purposes of this example, we will assume that the same ordinal is to be used
(TPM_Example). To re-use the previous session, the continueAuthSession output boolean must be TRUE.

The following table shows the command execution, the parameters created and the wire formats of all
of the information.

In this case, authLastNonceEven is the nonceEven value returned by the TPM with the output
parameters from the first execution of TPM_Example.

Caller On the wire Dir TPM

Generate nonceOdd

Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

Save nonceOdd with authHandle

Send TPM_Example tag

paramSize

ordinal

inArgOne

inArgTwo

nonceOdd

continueAuthSession

inAuth

 Retrieve authLastNonceEven from internal session storage

HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)

Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL

Execute TPM_Example and create returnCode

Generate nonceEven to replace authLastNonceEven in session

Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

Save nonceEven

HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)

Compare HM to resAuth. This verifies
returnCode and output parameters.

tag

paramSize

returnCode

outArgOne

nonceEven

continueAuthSession

resAuth

 Return output parameters

If continueAuthSession is FALSE then destroy session

Table 11:d - Example Re-used OSAP Session

The TPM user could then use the session for further authorization sessions or terminate it in the ways
that have been described above in TPM_OIAP. Note that termination of the OSAP session causes the
TPM to destroy the shared secret.

End of informative comment

OSAP Actions

1. The TPM MUST have been able to retrieve the shared secret (Shared, say) of the target entity when the
authorization session was established with TPM_OSAP. The entity and its secret must have been
previously loaded into the TPM.

2. The TPM MUST verify that the authorization handle (H, say) referenced in the command points to a valid
session. If it does not, the TPM returns the error code TPM_INVALID_AUTHHANDLE.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 58 of 150
 TCG PUBLISHED

3. The TPM MUST calculate the HMAC (HM1, say) of the command parameters according to previously
specified normative regarding HMAC calculation.

4. The TPM SHALL compare HM1 to the authorization value received in the command. If they are different,
the TPM returns the error code TPM_AUTHFAIL if the authorization session is the first session of a
command, or TPM_AUTH2FAIL if the authorization session is the second session of a command., the TPM
executes command C1 which produces an output (O, say) that requires authentication and uses a
particular return code (RC, say).

5. The TPM SHALL generate the latest version of the even nonce (nonceEven).

6. The TPM MUST calculate the HMAC (HM2) of the return parameters according to previously specified
normative regarding HMAC calculation.

7. The TPM returns HM2 in the parameter list.

8. The TPM SHALL retrieve the continue flag from the received command. If the flag is FALSE, the TPM
SHALL terminate the session and destroy the thread associated with handle H.

9. If the shared secret was used to provide confidentiality for data in the received command, the TPM SHALL
terminate the session and destroy the thread associated with handle H.

10. Each time that access to an entity (key) is authorized using OSAP, the TPM MUST ensure that the OSAP
shared secret is that derived from the entity using TPM_OSAP.

11.4 Authorization Session Handles
Start of informative comment:

The TPM generates authorization handles to allow for the tracking of information regarding a specific
authorization invocation.

The TPM saves information specific to the authorization, such as the nonce values, ephemeral secrets and
type of authentication in use.

The TPM may create any internal representation of the handle that is appropriate for the TPM’s design. The
requestor always uses the handle in the authorization structure to indicate authorization structure in use.

The TPM must support a minimum of two concurrent authorization handles. The use of these handles is to
allow the Owner to have an authorization active in addition to an active authorization for an entity.

To ensure garbage collection and the proper removal of security information, the requestor should terminate
all handles. Termination of the handle uses the continue-use flag to indicate to the TPM that the handle
should be terminated.

Termination of a handle instructs the TPM to perform garbage collection on all authorization data. Garbage
collection includes the deletion of the ephemeral secret.

End of informative comment.

1. The TPM MUST support authorization handles. The TPM MUST support a minimum of two concurrent
authorization handles.

2. The TPM MUST support authorization-handle termination. The termination includes secure deletion of all
authorization session information.

11.5 Authorization-Data Insertion Protocol (ADIP)
Start of informative comment:

The creation of authorization data is the responsibility of the entity owner. He or she may use whatever
process he or she wishes. The transmission of the authorization data from the owner to the TPM requires
confidentiality and integrity. The encryption of the authorization data meets these requirements. The

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 59 of 150
 TCG PUBLISHED

confidentiality and integrity requirements assume the insertion of the authorization data occurs over a
network. While local insertions of the data would not require these measures, the protocol is established to
be consistent with both local and remote insertions.

When the requestor is sending the authorization data to the TPM, the command to load the data requires the
authorization of the entity owner. For example, to create a new TPM ID and set its authorization data
requires the authorization data of the TPM Owner.

The confidentiality of the transmission comes from the encryption of the authorization data, and the integrity
comes from the ability of the owner to verify that the authorization is being sent to a TPM and that only a
specific TPM can decrypt the data.

The mechanism uses the following features of the TPM, OSAP and HMAC.

The creation of a new entity requires the authorization of the entity owner. When the requestor starts the
creation process, the creator must use OSAP.

The creator builds an encryption key using a SHA-1 hash of the shared secret from the OSAP mechanism and
the nonce (authLastNonceEven) returned by the TPM from the TPM_OSAP command.

The creator encrypts the new authorization data using the key from the previous step as a one-time pad with
XOR and then sends this encrypted data along with the creation request to the TPM.

The TPM decrypts the authorization data using the OSAP shared secret and authLastNonceEven, creates the
new entity.

The TPM includes the sends the reply back to the creator using the new authorization data as the secret value
of the HMAC.

The creator believes that the OSAP creates a shared secret known only to the creator and the TPM. The TPM
believes that the creator is the entity owner by their knowledge of the parent entity authorization data. The
creator believes that the process completed correctly and that the authorization data is correct because the
HMAC will only verify with the OSAP secret.

The ADIP allows for the creation of new entities and the secure insertion of the new entity authorization
data. The transmission of the new authorization data uses encryption with the key being a shared secret of an
OSAP session.

The OSAP session must be created using the owner of the new entity.

In the following example, we want to send the previously described command TPM_EXAMPLE to create a new
entity. In the example, we assume there is a third input parameter newAuth, and that one of the input
parameters is named parentHandle to reference the parent for the new entity (TPM Owner in some
circumstances such as the SRK and its children, otherwise a key).

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 60 of 150
 TCG PUBLISHED

Caller On the wire Dir TPM

Send TPM_OSAP TPM_OSAP

parentHandle

nonceOddOSAP

 Create session & authHangle

Generate authLastNonceEven

Save authLastNonceEven with authHandle

Generate nonceEvenOSAP

Generate sharedSecret = HMAC(parent.usageAuth,
nonceEvenOSAP, nonceOddOSAP)

Save parentHandle, sharedSecret with authHandle

Save authHandle, authLastNonceEven

Generate sharedSecret =
HMAC(parent.usageAuth,
nonceEvenOSAP, nonceOddOSAP)

Save sharedSecret

authHandle,
authLastNonceEven

nonceEvenOSAP

 Returns

Generate nonceOdd & save with
authHandle.

Compute input parameter newAuth = XOR(
entityAuthData, SHA1(sharedSecret,
authLastNonceEven))

Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

Send TPM_Example tag

paramSize

ordinal

inArgOne

inArgTwo

newAuth

authHandle

nonceOdd

continueAuthSession

inAuth

 Verify authHandle points to a valid session, mismatch returns
TPM_AUTHFAIL

Retrieve authLastNonceEven from internal session storage

HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)

Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL

Compute entityAuthData = XOR(newAuth, SHA1(sharedSecret,
authLastNonceEven))

Execute TPM_Example, create entity and build returnCode

Generate nonceEven to replace authLastNonceEven in session

Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 61 of 150
 TCG PUBLISHED

Save nonceEven

HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)

Compare HM to resAuth. This verifies
returnCode and output parameters.

tag

paramSize

returnCode

outArgOne

nonceEven

continueAuthSession

resAuth

 Return output parameters

Destroy auth session associated with authHandle

Table 11:e - Example ADIP Session

End of informative comment.

1. The TPM MUST enable ADIP by using the OSAP. The TPM MUST encrypt the authorization data for the new
entity by performing an XOR using the shared secret created by the OSAP.

2. The TPM MUST destroy the OSAP session whenever a new entity is created.

11.6 Authorization-Data Change Protocol (ADCP)
Start of informative comment:

All entities from the Owner to the SRK to individual keys and data blobs have authorization data. This data
may need to change at some point in time after the entity creation. The ADCP allows the entity owner to
change the authorization data. The entity owner of a wrapped key is the owner of the parent key.

A requirement is that the owner must remember the old authorization data. The only mechanism to change
the authorization data when the entity owner forgets the current value is to delete the entity and then
recreate it.

To protect the data from exposure to eavesdroppers or other attackers, the authorization data uses the same
encryption mechanism in use during the ADIP.

Changing authorization data requires opening two authentication handles. The first handle authenticates the
entity owner (or parent) and the right to load the entity. This first handle is an OSAP and supplies the data to
encrypt the new authorization data according to the ADIP protocol. The second handle can be either an OIAP
or an OSAP, it authorizes access to the entity for which the authorization data is to be changed.

The authorization data in use to generate the OSAP shared secret must be the authorization data of the
parent of the entity to which the change will be made.

When changing the authorization data for the SRK, the first handle OSAP must be setup using the TPM Owner
authorization data. This is because the SRK does not have a parent, per se.

If the SRKAuth data is known to userA and userB, userA can snoop on userB while userB is changing the
authorization for a child of the SRK, and deduce the child's newAuth. Therefore, if SRKAuth is a well known
value, TPM_ChangeAuthAsymStart and TPM_ChangeAuthAsymFinish are preferred over TPM_ChangeAuth when
changing authorization for children of the SRK.

This applies to all children of the SRK, including TPM identities.

End of informative comment.

1. Changing authorization data for the TPM SHALL require authorization of the current TPM Owner.

2. Changing authorization data for the SRK SHALL require authorization of the TPM Owner.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 62 of 150
 TCG PUBLISHED

3. If SRKAuth is a well known value, TPM_ChangeAuth SHOULD NOT be used to change the authorization
value of a child of the SRK, including the TPM identities.

4. All other entities SHALL require authorization of the parent entity.

11.7 Asymmetric Authorization Change Protocol (AACP)
Start of informative comment:

This is now deprecated. Use the normal change session inside of a transport session with confidentiality.

This asymmetric change protocol allows the entity owner to change entity authorization, under the parent’s
execution authorization, to a value of which the parent has no knowledge.

In contrast, the TPM_ChangeAuth command uses the parent entity authorization data to create the shared
secret that encrypts the new authorization data for an entity. This creates a situation where the parent
entity ALWAYS knows the authorization data for entities in the tree below the parent. There may be
instances where this knowledge is not a good policy.

This asymmetric change process requires two commands and the use of an authorization session.

End of informative comment.

1. Changing authorization data for the SRK SHALL involve authorization by the TPM Owner.

2. If SRKAuth is a well known value,

3. TPM_ChangeAuthAsymStart and TPM_ChangeAuthAsymFinish SHOULD be used to change the authorization
value of a child of the SRK, including the TPM identities.

4. All other entities SHALL involve authorization of the parent entity.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 63 of 150
 TCG PUBLISHED

12. FIPS 140 Physical Protection
Start of informative comment:

The FIPS 140-2 program provides assurance that a cryptographic device performs properly. It is appropriate
for TPM vendors to attempt to obtain FIPS 140-2 certification.

The TPM design should be such that the TPM vendor has the opportunity of obtaining FIPS 140-2 certification.

End of informative comment.

1. The TPM MUST be capable of obtaining FIPS 140-2 certification.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 64 of 150
 TCG PUBLISHED

13. Maintenance
Start of informative comment:

The maintenance feature is a vendor-specific feature, and its implementation is vendor-specific. The
implementation must, however, meet the minimum security requirements so that implementations of the
maintenance feature do not result in security weaknesses.

There is no requirement that the maintenance feature is available, but if it is implemented, then the
requirements must be met.

The maintenance feature described in the specification is an example only, and not the only mechanism that
a manufacturer could implement that meets these requirements.

Maintenance is different from backup/migration, because maintenance provides for the migration of both
migratory and non-migratory data. Maintenance is an optional TPM function, but if a TPM enables
maintenance, the maintenance capabilities in this specification are mandatory – no other migration
capabilities shall be used. Maintenance necessarily involves the manufacturer of a Subsystem.

When maintaining computer systems, it is sometimes the case that a manufacturer or its representative
needs to replace a Subsystem containing a TPM. Some manufacturers consider it a requirement that there be
a means of doing this replacement without the loss of the non-migrational keys held by the original TPM.

The owner and users of TCG platforms need assurance that the data within protected storage is adequately
protected against interception by third parties or the manufacturer.

This process MUST only be performed between two platforms of the same manufacturer and model. If the
maintenance feature is supported, this section defines the required functions defined at a high level. The
final function definitions and entire maintenance process is left to the manufacturer to define within the
constraints of these high level functions.

Any maintenance process must have certain properties. Specifically, any migration to a replacement
Subsystem must require collaboration between the Owner of the existing Subsystem and the manufacturer of
the existing Subsystem. Further, the procedure must have adequate safeguards to prevent a non-migrational
key being transferred to multiple Subsystems.

The maintenance capabilities TPM_CreateMaintenanceArchive and TPM_LoadMaintenanceArchive enable the
transfer of all Protected Storage data from a Subsystem containing a first TPM (TPM1) to a Subsystem
containing a second TPM (TPM2):

A manufacturer places a public key in non-volatile storage into its TPMs at manufacture time.

The Owner of TPM1 uses TPM_CreateMaintenanceArchive to create a maintenance archive that enables the
migration of all data held in Protected Storage by TPM1. The Owner of TPM1 must provide his or her
authorization to the Subsystem. The TPM then creates the TPM_MIGRATE_ASYMKEY structure and follows the
process defined.

The XOR process prevents the manufacturer from ever obtaining plaintext TPM1 data.

The additional random data provides a means to assure that a maintenance process cannot subvert archive
data and hide such subversion.

The random mask can be generated by two methods, either using the TPM RNG or MGF1 on the TPM Owners
authorization data.

The manufacturer takes the maintenance blob, decrypts it with its private key, and satisfies itself that the
data bundle represents data from that Subsystem manufactured by that manufacturer. Then the
manufacturer checks the endorsement certificate of TPM2 and verifies that it represents a platform to which
data from TPM1 may be moved.

The manufacturer dispatches two messages.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 65 of 150
 TCG PUBLISHED

The first message is made available to CAs, and is a revocation of the TPM1 endorsement certificate.

The second message is sent to the Owner of TPM2, which will communicate the SRK, tpmProof and the
manufacturer’s permission to install the maintenance blob only on TPM2

The Owner uses TPM_LoadMaintenanceArchive to install the archive copy into TPM2, and overwrite the
existing TPM2-SRK and TPM2-tpmProof in TPM2. TPM2 overwrites TPM2-SRK with TPM1-SRK, and overwrites
TPM2-tpmProof with TPM1-tpmProof.

Note that the command TPM_KillMaintenanceFeature prevents the operation of
TPM_CreateMaintenanceArchive and TPM_LoadMaintenanceArchive. This enables an Owner to block
maintenance (and hence the migration of non-migratory data) either to or from a TPM.

It is required that a manufacturer takes steps that prevent further access of migrated data by TPM1. This may
be achieved by deleting the existing Owner from TPM1, for example.

For the manufacturer to validate that the maintenance blob is coming from a valid TPM, the manufacturer
can require that a TPM identity sign the maintenance blob. The identity would be from a CA under the
control of the manufacturer and hence the manufacturer would be satisfied that the blob is from a valid TPM.

End of informative comment.

1. The maintenance feature MUST ensure that the information can be on only one TPM at a time.
Maintenance MUST ensure that at no time the process will expose a shielded location. Maintenance MUST
require the active participation of the Owner.

2. Any migration of non-migratory data protected by a Subsystem SHALL require the cooperation of both the
Owner of that non-migratory data and the manufacturer of that Subsystem. That manufacturer SHALL
NOT cooperate in a maintenance process unless the manufacturer is satisfied that non-migratory data will
exist in exactly one Subsystem. A TPM SHALL NOT provide capabilities that support migration of non-
migratory data unless those capabilities are described in the TCG specification.

3. The maintenance feature MUST move the following

4. TPM_KEY for SRK. The maintenance process will reset the SRK authorization to match the TPM Owners
authorization

5. TPM_PERMANENT_DATA -> tpmProof

6. TPM Owners authorization

13.1 Field Upgrade
Start of informative comment:

A TPM, once in the field, may need to update the protected capabilities. This command, which is optional,
provides the mechanism to perform the update.

End of informative comment.

The TPM SHOULD have provisions for upgrading the subsystem after shipment from the manufacturer. If
provided the mechanism MUST implement the following guidelines:

1. The upgrade mechanisms in the TPM MUST not require the TPM to hold a global secret. The definition of
global secret is a secret value shared by more than one TPM.

2. The TPM is not allowed to pre-store or use unique identifiers in the TPM for the purpose of field upgrade.
The TPM MUST NOT use the endorsement key for identification or encryption in the upgrade process. The
upgrade process MAY use a TPM Identity (AIK) to deliver upgrade information to specific TPM devices.

3. The upgrade process can only change protected-capabilities.

4. The upgrade process can only access data in shielded-locations where this data is necessary to validate
the TPM Owner, validate the TPME and manipulate the blob

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 66 of 150
 TCG PUBLISHED

5. The TPM MUST conform to the TCG specification, protection profiles and security targets after the
upgrade. The upgrade MAY NOT decrease the security values from the original security target.

6. The security target used to evaluate this TPM MUST include this command in the TOE.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 67 of 150
 TCG PUBLISHED

14. Proof of Locality
Start of informative comment:

When a platform is designed with a trusted process, the trusted process may wish to communicate with the
TPM and indicate that the command is coming from the trusted process. The definition of a trusted process is
a platform specific issue.

The commands that the trusted process sends to the TPM are the normal TPM commands with a modifier that
indicates that the trusted process initiated the command. The TPM accepts the command as coming from the
trusted process merely due to the fact that the modifier is set. The TPM itself is not responsible how the
signal is asserted; only that it honors the assertions The TPM cannot verify the validity of the modifier.

The definition of the modifier is a platform specific issue. Depending on the platform the modifier could be a
special bus cycle or additional input pins on the TPM. The assumption is that to spoof the modifier to the TPM
requires more than just a simple hardware attack but would require expertise and possibly special hardware.
One example would be special cycles on the LPC bus that inform the TPM it is under the control of a process
on the PC platform.

To allow for multiple mechanisms and for finer grained reporting the TPM will include 4 locality modifiers.
These four modifiers allow the platform specific specification to properly indicate exactly what is occurring
and for TPM’s to properly respond to locality.

End of informative comment.

1. The TPM modifies the receipt of a command and indicates that the trusted process sent the command
when the TPM determines that the modifier is on. The modifier MUST only affect the individual command
just received and MUST NOT affect any other commands. However the TPM_ExecuteTransport MUST
propagate the modifier to the wrapped command.

2. A TPM platform specific specification MAY indicate the presence of a maximum of 4 local modifiers. The
modifier indication uses the TPM_MODIFIER_INDICATOR structure.

3. The modifiers may occur singularly or in combination.

4. The definition of the trusted source is in the platform specific specification.

5. For ease in reading this specification the indication that the TPM has received any modifier will be
LOCAL_MOD = TRUE.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 68 of 150
 TCG PUBLISHED

15. Monotonic Counter
Start of informative comment:

The monotonic counter provides an ever-increasing incremental value. The TPM must support at least 4
concurrent counters. Implementations inside the TPM may create 4 unique counters or there may be one
counter with pointers to keep track of the pointers current value. A naming convention to allow for
unambiguous reference to the various components the following terms are in use:

Internal Base – This is the main counter. It is in use internally by the TPM and is not directly accessable by any
outside process.

External Counter – A counter in use by external processes. This could be related to the main counter via
pointers and difference values or it could be a totally unique value. The value of an external counter is not
affected by any use, increment or deletion of any other external counter.

Max Value – The max count value of all counters (internal and external). So if there were 3 external counters
having values of 10, 15 and 201 and the internal base having a value of 201 then Max Value is 201. In the
same example if the internal base was 502 then Max Value would be 502.

There are two methods of obtaining an external count, signed or unsigned. The external counter must allow
for 7 years of increments every 5 seconds without causing a hardware failure. The output of the counter is a
32-bit value.

The TPM may create a throttling mechanism that limits the ability to increment an external counter within a
certain time range. The TPM must support an increment rate of once every 5 seconds.

To create an external counter requires TPM Owner authorization. To increment an external counter the
command must pass authorization to use the counter.

External counters can be tagged with a short text string to facilitate counter administration.

Manufacturers are free to implement the monotonic counter using any mechanism.

To illustrate the counters and base the following example is in use. This mechanism uses two saving values
(diff and start), however this is only an example and not meant to indicate any specific implementation.

The internal base (IB) always moves forward and can never be reset. IB drives all external counters on the
machine..

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 69 of 150
 TCG PUBLISHED

The purpose of the following example is to show the two external counters always moving forward
independent of the other and how the IB moves forward also.

Starting condition is that IB is at 22 and no other external counters are active.

Start external counter A

 Increment IB (set new Max Value) IB = 23

 Assign start value of A to 23 (or Max Value)

 Assign difference of A to 23 (we always start at current value of IB)

 Assign a handle for A

Increment A 5 times

 IB is now 28

Request current A value

 Return 28 = 28 (IB) + 23 (difference) – 23 (start value)

 Counter A has gone from the start of 23 to 28 incremented 5 times.

TPM_Startup(ST_CLEAR)

Start Counter B

 Save A difference 28 = 23 (old difference) + 28 (IB) – 23 (start value)

 Increment IB (set new Max Value) IB = 29

 Set start value of B to 29 (or Max Value)

 Assign difference of B to 29

 Assign handle for B

Increment B 8 times

 IB is now 37

Request B value

 Return 37 = 37 (IB) + 29 (difference) – 29 (start value)

TPM_Startup(ST_CLEAR)

Increment A

 Store B difference (37)

 Load A start value of 37

 Increment IB to 38

Return A value

 Return 29 = 38 (IB) + 28 (difference) – 37 (start value)

Notice that A has gone from 28 to 29 which is correct, while B is at 37. Depending on the order of increments
A may pass B or it may always be less than B.

End of informative comment.

1. The counter MUST be designed to not wear out in the first 7 years of operation. The counter MUST be
able to increment at least once every 5 seconds. The TPM, in response to operations that would violate

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 70 of 150
 TCG PUBLISHED

these counter requirements, MAY throttle the counter usage (cause a delay in the use of the counter) or
return the error TPM_E_COUNTERUSAGE.

2. The TPM MUST support at least 4 concurrent counters.

3. The establishment of a new counter MUST prevent the reuse of any previous counter value. I.E. if the
TPM has 3 counters and the max value of a current counter is at 36 then the establishment of a new
counter would start at 37.

4. After a successful TPM_Startup(ST_CLEAR) the first successful TPM_IncrementCounter sets the counter
handle. Any attempt to issue TPM_IncrementCounter with a different handle MUST fail.

5. TPM_CreateCounter does NOT set the counter handle.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 71 of 150
 TCG PUBLISHED

16. Transport Protection
Start of informative comment:

The creation of sessions allows for the grouping of a set of commands into a session. The session provides a
log of all commands and can provide confidentiality of the commands using the session.

Session establishment creates a shared secret and then uses the shared secret to authorize and protect
commands sent to the TPM using the session.

After establishing the session, the caller uses the session to wrap a command to execute. The user of the
transport session can wrap any command except for commands that would create nested transport sessions.

The log of executed commands uses a structure that includes the parameters and current tick count. The
session log provides a record of each command using the session.

The transport session uses the same rolling nonce protocol that authorization sessions use. This protocol
defines two nonces for each command sent to the TPM; nonceOdd provided by the caller and nonceEven
generated by the TPM.

For confidentiality, the caller uses the MGF1 function to create an XOR string the same size as the command
to execute. The inputs to the MGF1 function are the shared secret, nonceOdd and nonceEven.

There is no explicit close session as the caller can use the continueSession flag set to false to end a session.
The caller can also call the sign session log which also ends the session. If the caller losses track of which
sessions are active the caller should use the flush commands to regain control of the TPM resources.

For an attacker to successfully break the encryption the attacker must be able to determine from a few bits
what an entire SHA-1 output was. This is equivalent to breaking SHA-1. The reason that the attacker will
know some bits is that the commands are in a known format. This then allows the attacker to determine what
the XOR bits were. Knowledge of 159 bits of the XOR stream does not provide any greater that 50% probability
of knowing the 160th bit.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 72 of 150
 TCG PUBLISHED

This picture shows the protection of a TPM_Quote command. Previously executed was session establishment.
The nonces in use for the TPM_Quote have no relationship with the nonces that are in use for the
TPM_ExecuteTransport command.

End of informative comment.

1. The TPM MUST support a minimum of one transport session.

2. The TPM MUST NOT support the nesting of transport sessions. The definition of nesting is attempting to
execute a wrapped command that is a transport session command. So for example when executing
TPM_ExecuteTransport the wrapped command MUST not be TPM_ExecuteTransport.

3. The TPM MUST ensure that if transport logging is active that the inclusion of the tick count in the session
log does not provide information that would make a timing attack on the operations using the session
more successful.

4. The transport session can be exclusive. That is any command executed outside of the transport session
will cause the invalidation of the transport session

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 73 of 150
 TCG PUBLISHED

16.1 Transport encryption and authorization
Start of informative comment:

The confidentially of the transport protection is provided by a encrypting the wrapped command. Encryption
of various items in the wrapped command makes resource management of a TPM impossible. For this reason,
encryption of the entire command is not possible. In addition to the encryption issue there is difficulties with
creating the HMAC for the ExecuteTransport authorization.

The solution to these problems is to provide limited encryption and HMAC information.

The HMAC will only include two areas from the wrapped command. This is the command header information
up to the handles. The format of all TPM commands is such that all handles are in the data stream prior to
the payload or data. After the data comes the authorization information. To enable resource management
the HMAC for the ExecuteTransport only includes the ordinal, header information and the data. The HMAC
does not include handles and the authorization handles and nonces.

A more exact representation of the execute transport command would be the following

 * TAGet | LENet | ORDet | wrappedCmd | AUTHet *

And wrappedCmd looks like

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 74 of 150
 TCG PUBLISHED

 * TAGw | LENw | ORDw | HANDLESw | DATAw | AUTH1w (o) | AUTH2w (o) *

The calculation for AUTHet takes as the data component of the HMAC calculation the concatenation of ORDw
and DATAw. A normal HMAC calculation would have taken the entire wrappedCmd value but for the
executeTransport calculation only the above two values are active. This does require the executeTransport
command to parse the wrappedCmd to find the appropriate values.

The data area for the HMAC calculation would then be the following:

cmdData = ORDw || DATAw

AUTHet = ORDet || cmdData

The outgoing AUTHet creates the same cmdData by parsing the wrappedCmd and extracting the return code
and data while ignoring the handles and authorizations.

cmdData = RCw || DATAw

AUTHet = RCet || cmdData

End of informative comment.

The TPM MUST release a transport session and all information related to the session when:

1. TPM_ReleaseTransportSigned executed

2. TPM_ExecuteTransport executed with continueTranSession set to FALSE

3. Any failure of the integrity check during execution of TPM_ExecuteTransport

4. If the session has TPM_TRANSPORT_LOG set and the TPM tick session is interrupted for any reason. This is
due to the return of tick values without the nonces associated with the session.

16.1.1 MGF1 parameters
Start of informative comment:

MGF1 provides the confidentiality for the transport session. MGF1 is a function from PKCS 1 version 2.0. This
function provides a mechanism to distribute entropy over a large sequence. The sequence provides a value to
XOR over the message. This in effect creates a stream cipher but not one that is available for bulk
encryption.

Transport confidentiality uses MGF1 as a stream cipher and obtains the entropy for each message from the
following three parameters; NonceOdd, NonceEven and session authorization data.

It is imperative that the stream cipher not use the same XOR sequence at any time. The following illustrates
how the sequence changes for each message (both input and output).

M1Input – N1, N2, Auth(N1,N2, SessionSecret)

M1Output – N1, N4, Auth(N1, N4, SessionSecret)

M2Input – N3, N4, Auth(N3, N4, SessionSecret)

M2Output – N3, N6, Auth(N3, N6, SessionSecret)

There is an issue with this sequence. If the caller does not change N1 to N3 between M1Output and M2Input
then the same sequence will be generated. The TPM does not enforce the requirement to change this value
so it is possible to leak information.

The fix for this is to add one more parameter, the direction. So sequence is now this:

M1Input – N1, N2, “in”, Auth(N1,N2, SessionSecret)

M1Output – N1, N4, “out”, Auth(N1, N4, SessionSecret)

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 75 of 150
 TCG PUBLISHED

M2Input – N3, N4, “in”, Auth(N3, N4, SessionSecret)

M2Output – N3, N6, “out”, Auth(N3, N6, SessionSecret)

Where 1 indicates the in direction and 2 indicates the out direction.

Notice the calculation for M1Output uses a 2 and M2Input uses a 1, so if the caller makes a mistake and does
not change NonceOdd the sequence will still be different.

NonceEven is under control of the TPM and is always changing so there is no need to worry about NonceEven
not changing.

End of informative comment.

16.1.2 HMAC calculation
Start of informative comment:

The HMAC calculation on for transports presents some issues with what should and should not be in the
calculation. The idea is to create a calculation for the wrapped command and add that to the wrapper.

So the data area for a wrapped command is not entirely HMAC’d like a normal command would be.

The process will be calculate the value for the wrapped command according to the normal rules of command
HMAC calculations and treat the SHA-1 value of the wrapped commands parameters and ordinals and treat
that value as the 3S parameter in the calculation.

Example using a wrapped TPM_LoadKey command

Calculate the SHA-1 value for the TPM_LoadKey command (ordinal and data) as per the normal HMAC rules.
Take the digest and use that value as the data value for the executeTransport HMAC calculation.

End of informative comment.

16.1.3 Transport log creation
Start of informative comment:

The log of information that a transport session creates needs a mechanism to tie any keys in use during the
session to the session. As the HMAC and encryption for the command specifically exclude handles there is no
direct way to create the binding.

When creating the input log, if the first handle found points to a key, the hash of the public key is added to
the log. The session owner knows the value of any keys in use and hence can still create a log that shows the
values used by the log and can validate the session.

A specific example using UNSEAL is shown

 * TAGet | LENet | ORDet | wrappedCmd | AUTHet *

 TPM_REQ_AUTH1_COMMAND
 xx len
 TPM_ORD_EXECUTE_TRANSPORT
 wrappedCmd
 AUTHet

And wrappedCmd looks like

 * TAGw | LENw | ORDw | HANDLESw | DATAw | AUTH1w (o) | AUTH2w (o) *

 TPM_REQ_AUTH1_COMMAND

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 76 of 150
 TCG PUBLISHED

 Xx len
 TPM_ORD_UNSEAL
 parentHandle
 inData
 AUTH1w
 AUTH2w
When creating the transport input log the TPM will create a hash of the ordinal || inData parameters and
then append to that value the hash of the ordinal || key pointed to by parentHandle.

End of informative comment.

16.1.4 Additional Encryption Mechanisms
Start of informative comment:

The TPM can optionally implement alternate algorithms for the encryption of commands sent to the
TPM_ExecuteTransport command. The designation of the algorithm uses the TPM_KEY_PARMS element of the
TPM_TRANSPORT_PUBLIC parameter of TPM_EstablishTransport command.

The anticipation is that AES and 3DES will be available algorithms supported by various TPM’s. Symmetric
algorithms have options available to them like key size, block size and operating mode. When using an
algorithm other than MGF1 the algorithm must specify these options.

End of informative comment.

1. The TPM MAY support other symmetric algorithms for the confidentiality requirement in
TPM_EstablishTransport

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 77 of 150
 TCG PUBLISHED

16.2 Transport Error Handling
Start of informative comment:

With the transport hiding the actual execution of commands and the transport capable of generating errors,
rules must be established to allow for the errors and the results of commands to be properly passed to TPM
callers.

End of informative comment.

1. There are 3 cases of errors:

2. C1 is the case where an error occurs during the processing of the transport package at the TPM. In this
case the wrapped command has not been sent to the command decoder. Errors occurring during C1 are
sent back to the caller as a response to the TPM_ExecuteTransport command. The error response does
not have confidentiality.

3. C2 is the case where an error occurs during the processing of the wrapped command. This results in an
error response from the command. The session returns the error response according to the attributes of
the session.

4. C3 is the case where an error occurs after the wrapped command has completed processing and the TPM
is preparing the response to the TPM_ExecuteTransport command. In this case where the TPM does have
an internal error the TPM has no choice but to return the error as in C1. This however hides the results of
the wrapped command. If the wrapped command completed successfully then there are session nonces
that are being returned to the caller that are lost. The loss of these nonces causes the caller to be unsure
of the state of the TPM and requires the reestablishment of sessions and keys.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 78 of 150
 TCG PUBLISHED

16.3 Exclusive Transport Sessions
Start of informative comment:

The caller may establish an exclusive session with the TPM. When an exclusive session is running execution of
any command, other then executeTransport or releaseTransportSigned, causes the invalidation of the
exclusive transport session. The design for the exclusive session is to provide an assurance that no other
command executed on the TPM, it is not a lock to prevent other operations from occurring. Therefore, the
caller is responsible to ensure no interruption of the sequence of commands using the TPM.

One exclusive session

The TPM only supports one exclusive session at a time. There is no nesting or other commands possible. The
TPM maintains an internal flag that indicates the existence of an exclusive session. Any operation other than
TPM_ExecuteTransport or TPM_ReleaseTransportSigned causes the invalidation of the exclusive session
handle. Invalidation means that the handle is no longer valid and all subsequent attempts to use the handle
return an error.

TSS responsibilities

It is the responsibility of the TSS (or other controlling software) to ensure that only commands using the
session reach the TPM. As the purpose of the session is to show that nothing else occurred on the TPM during
the session, the TSS should control access to the TPM and prevent any other uses of the TPM. The TSS design
must take into account the possibility of exclusive session handle invalidation.

Sleep states

Exclusive sessions as defined here do not work across TPM_SaveState and TPM_Startup(ST_State) invocations.
To have this sequence work properly there would need to be exceptions to the only TPM_ExecuteTranport
and TPM_ReleaseTransportSigned are available in an exclusive session. The requirement for these exceptions
would come from the attempt of the TSS to understand the current state of the TPM. Commands like
TPM_GetCapability and others would have to execute to inform the TSS as to the internal state of the TPM.
For this reason, there are no exceptions to the rule and the exclusive session does not remain active across a
TPM_SaveState command.

End of informative comment.

1. The TPM MUST support only one exclusive transport session

2. The TPM MUST invalidate the exclusive transport session upon the receipt of any command other than
TPM_ExecuteTransport or TPM_ReleaseTransportSigned

a. Invalidation includes the release of any resources assigned to the session

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 79 of 150
 TCG PUBLISHED

16.4 Transport Audit Handling
Start of informative comment:

Auditing of TPM_ExecuteTransport occurs as any other command that may require auditing. There are two
entries in the log, one for input one for output. The execution of the wrapped command can create an
anomaly in the log.

Assume that both TPM_ExecuteTransport and the wrapped commands require auditing. The audit flow would
look like the following:

 TPM_ExecuteTransport input parameters

 wrapped command input parameters

 wrapped command output parameters

 TPM_ExecuteTransport output parameters

End of informative comment.

1. Audit failures are reported using the AUTHFAIL error commands and reflect the success or failure of the
wrapped command.

16.4.1 Auditing of wrapped commands
Start of informative comment:

Auditing provides information to allow an auditor to recreate the operations performed. Confidentiality on
the transport channel is to hide what operations occur. These two features are in conflict. According to the
TPM design philosophy, the TPM Owner takes precedence.

For a command sent on a transport session, with the session using confidentiality and the command requiring
auditing, the TPM will execute the command however the input and output parameters for the command are
set to NULL.

End of informative comment.

1. When the wrapped command is a command that requires auditing and the transport session is providing
confidentiality, the TPM MUST perform the audit, however the input and output parameters of the
audited command MUST be set to NULL when computing the audit digest.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 80 of 150
 TCG PUBLISHED

17. Audit Commands
Start of informative comment:

To allow the TPM Owner the ability to determine that certain operations on the TPM have been executed
auditing of commands is possible. The audit value is a digest held internally to the TPM and externally as a
log of all audited commands. With the log held externally to the TPM, the internal digest must allow the log
auditor to determine the presence of attacks against the log. The evidence of tampering may not provide
evidence of the type of attack mounted against the log.

The TPM cannot enforce any protections on the external log. It is the responsibility of the external log owner
to properly maintain and protect the log.

The TPM provides mechanisms for the external log maintainer to resynchronize the internal digest and
external logs.

The Owner has the ability to set which functions generate an audit event and to change which functions
generate the event at any time.

The status of the audit generation is not sensitive information and so the command to determine the status of
the audit generation is not an owner authorized command.

It is important to note the difference between auditing and the logging of transport sessions. The audit log
provides information on the execution of specific commands. There will be a very limited number of audited
commands, most likely those commands that provide identities and control of the TPM. Commands such as
unseal would not be audited, they would use the logging functions of a transport session.

The auditing of an ordinal happens in a two-step process. The first step involves auditing the receipt of the
command the input parameters; the second step involves auditing the response to the command and the
output parameters. This two-step process is in place to lower the amount of memory necessary to keep track
of the audit while executing the command. This two-step process makes no memory requirements on a TPM
to save any audit information while a command is executing.

There is a requirement to enable verification of the external audit log both during a power session and across
power sessions and to enable detection of partial or inconsistent audit logs throughout the lifetime of a TPM.

A TPM will hold an internal record consisting of a non-volatile counter (that increments once per session,
when the first audit event of that session occurs) and a digest (that holds the digest of the current session).
Most probably, the audit digest will be volatile. Note, however, that nothing in this specification prevents the
use of a non-volatile audit digest. This arrangement of counter and digest is advantageous because it is easier
to build a high endurance non-volatile counter than a high endurance non-volatile digest. This arrangement is
insufficient, however, because the truncation of an audit log of any session is possible without trace. It is
therefore necessary to perform an explicit close on the audit session. If there is no record of a close-audit
event in an audit session, anything could have happened after the last audit event in the audit log. The
essence of a typical TPM audit recording mechanism is therefore:

The TPM contains a volatile digest used like a PCR, where the “integrity metrics” are digests of command
parameters in the current audit session.

An audit session opens when the volatile “PCR” digest is “extended” from its NULL state. This occurs
whenever an audited command is executed AND no audit session currently exists, and in no other
circumstances. When an audit session opens, a non-volatile counter is automatically incremented.

An audit session closes when a TPM receives TPM_GetAuditEventSigned with a CloseAudit parameter asserted.
An audit session must be considered closed if the value in the volatile digest is invalid (for whatever reason).

TPM_GetCapability should report the effect of TPM_Startup on the volatile digest. (TPMs may initialize the
volatile digest on the first audit command after TPM_Startup(ST_CLEAR), or on the first audit command after
any version of TPM_Startup, or may be independent of TPM_Startup.)

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 81 of 150
 TCG PUBLISHED

When the TPM signs its audit digest, it signs the concatenation of the non-volatile counter and the volatile
digest, and exports the value of the non-volatile counter, plus the value of the volatile digest, plus the value
of the signature.

Note that if a TPM_SaveState is an audited command, TPM_SaveState should be issued before
TPM_GetAuditEventSigned with CloseAudit asserted. This is safe because TPM_GetAuditEventSigned does not
alter any parameter that is preserved by TPM_SaveState.

The system designer needs to ensure that the selected TPM can handle the specific environment and avoid
burnout of the audit monotonic counter.

End of informative comment.

1. Audit functionality is optional

a. If the platform specific specification requires auditing the specification SHALL indicate how the PTM
implements audit

2. The TPM MUST maintain an audit monotonic count that is only available for audit purposes.

a. The increment of this audit counter is under the sole control of the TPM and is not usable for other
count purposes.

b. This monotonic count MUST BE incremented by one whenever the audit digest is “extended” from a
NULL state.

3. The TPM MUST maintain an audit digest.

a. This digest MUST be set to NULL upon the execution of TPM_GetAuditEventSigned with a TRUE value
of closeAudit provided that the signing key is an identity key.

b. This digest MAY be set to NULL on TPM_Startup[ST_CLEAR] or TPM_Startup[ST_STATE].

c. When an audited command is executed, this register MUST be extended with the digest of that
command.

4. Each command ordinal has an indicator in non-volatile TPM memory that indicates if execution of the
command will generate an audit event. The setting of ordinal indicator MUST be under control of the TPM
Owner.

5. Updating of auditDigest MAY cease when TPM_VOLATILE_FLAGS -> deactivated is TRUE. This is because a
deactivated TPM performs no useful service until the TPM_Startup(ST_CLEAR), at which point
TPM_VOLATILE_FLAGS -> deactivated is reinitialized.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 82 of 150
 TCG PUBLISHED

17.1 Audit Monotonic Counter
Start of informative comment:

The audit monotonic counter (AMC) performs the task of sequencing audit logs across audit sessions. The AMC
must have no other uses other than the audit log.

The TPM and platform should be matched such that the expected AMC endurance matches the expected
platform audit sessions and sleep cycles.

Given the size of the AMC it is not anticipated that the AMC would roll over. If the AMC were to roll over, and
the storage of the AMC still allowed updates, the AMC could cycle and start at 0 again.

End of informative comment.

1. The AMC is a TPM_COUNTER_VALUE.

2. The AMC MUST last for 7 years or at least 1,000,000 audit sessions whichever occurs first. After this
amount of usage, there is no guarantee that the TPM will continue to properly increment the monotonic
counter.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 83 of 150
 TCG PUBLISHED

17.2 Audit Generation
Start of informative comment:

The TPM generates an audit event in response to the TPM executing a function that has the audit flag set to
TRUE for that function.

The TPM maintains an extended value for all audited operations.

Input audit generation occurs before the listed actions and output audit generation occurs after the listed
actions.

End of informative comment.

Description

The TPM extends the audit digest whenever the ordinalAuditStatus is TRUE for the ordinal about to be
executed.

Actions

The TPM will execute the ordinal and perform auditing in the following manner

1. Map V1 to TPM_VOLATILE_DATA

2. Map P1 to TPM_PERSISTENT_DATA

3. If V1 -> auditDigest is NULL

a. Increment P1 -> auditMonotonicCounter by 1

4. Create A1 a TPM_AUDIT_EVENT_IN structure

a. Set A1 -> inputParms to the input parameters from the command

b. Set V1 -> auditDigest to SHA-1 (V1 -> auditDigest || A1)

5. Execute command

a. Execution implies the performance of the listed actions for the ordinal.

6. Create A2 a TPM_AUDIT_EVENT_OUT structure

a. Set A2 -> outputParms to the output parameters from the command

b. Set A2 -> returnCode to the return code for the command

c. Set V1 -> auditDigest to SHA-1 (V1 -> auditDigest || A2)

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 84 of 150
 TCG PUBLISHED

17.3 Effect of audit failing after successful completion of a command
Start of informative comment:

An operation could complete successfully and then when the TPM attempts to audit the command the audit
process could have an internal error that forces the TPM to return an error.

The TPM is unable to return the results of the command that ran and this includes success or failure. To
indicate to the caller the TPM will one of two error codes TPM_AUDITFAIL_SUCCESSFUL and
TPM_AUDITFAIL_UNSUCCESSFUL. These two error codes indicate if the command succeeded or failed. The
purpose of these error codes is to indicate to the caller what occurred with the command execution.

This is new functionality that changes the 1.1 TPM functionality when this condition occurs.

End of informative comment.

1. When after successful completion of an operation, and in performing the audit process, the TPM has an
internal failure (unable to write, SHA-1 failure etc.) the TPM MUST set the internal TPM state such that
the TPM returns the TPM_FAILEDSELFTEST error.

2. If the command is returning a return code that indicates successful execution of the command the TPM
SHALL change the return code to TPM_AUDITFAIL_SUCCESSFUL. For all other error codes the TPM MUST
return TPM_AUDITFAIL_UNSUCCESSFUL.

3. If the TPM is permanently nonrecoverable after an audit failure, then the TPM MUST always return
TPM_FAILEDSELFTEST for every command other than TPM_GetTestResult. This state must persist
regardless of power cycling, the execution of TPM_Init or any other actions.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 85 of 150
 TCG PUBLISHED

18. Design Section on Time Stamping
Start of informative comment:

The TPM provides a service to apply a time stamp to various blobs. The time stamp provided by the TPM is
not an actual universal time clock (UTC) value but is the number of timer ticks the TPM has counted. It is the
responsibility of the caller to associate the ticks to an actual UTC time.

The TPM counts ticks from the start of a timing session. Timing sessions are platform dependent events that
may or may not coincide with TPM_Init and TPM_Startup sessions. The reason for this difference is the
availability of power to the TPM. In a PC desktop, for instance power could be continually available to the
TPM by using power from the wall socket. For a PC mobile platform, power may not be available when only
using the internal battery. It is a platform designer’s decision as to when and how they supply power to the
TPM to maintain the timing ticks.

The TPM can provide a time stamping service. The TPM does not maintain an internal secure source of time
rather the TPM maintains a count of the number of ticks that have occurred since the start of a timing
session.

On a PC, the TPM may use the timing source of the LPC bus or it may have a separate clock circuit. The
anticipation is that availability of the TPM timing ticks and the tick resolution is an area of differentiation
available to TPM manufactures and platform providers.

End of informative comment.

1. This specification makes no requirement on the mechanism required to implement the tick counter in the
TPM.

2. This specification makes no requirement on the ability for the TPM to maintain the ability to increment
the tick counter across power cycles or in different power modes on a platform.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 86 of 150
 TCG PUBLISHED

18.1 Tick Components
Start of informative comment:

The TPM maintains for each tick session the following values:

Tick Count Value (TCV) – The count of ticks for the session.

Tick Increment Rate (TIR) – The rate at which the TCV is incremented. There is a set relationship between TIR
and seconds, the relationship is set during manufacturing of the TPM and platform. This is the
TPM_CURRENT_TICKS -> tickRate parameter.

Tick Session Nonce (TSN) – The session nonce is set at the start of each tick session.

End of informative comment.

1. The TCV MUST be set to 0 at the start of each tick session. The TPM MUST start a new tick session if the
TPM loses the ability to increment the TCV according to the TIR. The <tickType> value MAY indicate other
events that cause the TCV to be set to 0.

2. The TSN MUST be set to the next value from the TPM RNG at the start of each new tick session. When the
TPM loses the ability to increment the TCV according to the TIR the TSN MUST be set to NULLS.

3. If the TPM discovers tampering with the tick count (through timing changes etc) the TPM MUST treat this
as an attack and shut down further TPM processing as if a self-test had failed.

18.2 Basic Tick Stamp
Start of informative comment:

The TPM does not provide a secure time source, nor does it provide a signature over some time value. The
TPM does provide a signature over some current tick counter. The signature covers a hash of the blob to
stamp, the current counter value, the tick session nonce and some fixed text.

The Tick Stamp Result (TSR) is the result of the tick stamp operation that associates the TCV, TSN and the
blob. There is no association with the TCV or TSR with any UTC value at this point.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 87 of 150
 TCG PUBLISHED

18.3 Associating a TCV with UTC
Start of informative comment:

An outside observer would like to associate a TCV with a relevant time value. The following shows how to
accomplish this task. This protocol is not required but shows how to accomplish the job.

EntityA wants to have BlobA time stamped. EntityA performs TPM_TickStamp on BlobA. This creates TSRB
(TickStampResult for Blob). TSRB records TSRBTCV, the current value of the TCV, and associates TSRBTCV
with the TSN.

Now EntityA needs to associate a TCV with a real time value. EntityA creates blob TS which contains some
known text like “Tick Stamp”. EntityA performs TPM_TickStamp on blob TS creating TSR1. This records
TSR1TCV, the current value of the TCV, and associates TSR1TCV with the TSN.

EntityA sends TSR1 to a Time Authority (TA). TA creates TA1 which associates TSR1 with UTC1.

EntityA now performs TPM_TickStamp on TA1. This creates TSR2. TSR2 records TSR2TCV, the current values
of the TCV, and associates TSR2TCV with the TSN.

Analyzing the associations

EntityA has three TSR’s; TSRB the TSR of the blob that we wanted to time stamp, TSR1 the TSR associated
with the TS blob and TSR2 the TSR associated with the information from the TA. EntityA wants to show an
association between the various TSR such that there is a connection between the UTC and BlobA.

From TSR1 EntityA knows that TSR1TCV is less than the UTC. This is true since the TA is signing TSR1 and the
creation of TSR1 has to occur before the signature of TSR1. Stated mathematically:

 TSR1TCV < UTC1

From TSR2 EntityA knows that TSR2TCV is greater than the UTC. This is true since the TPM is signing TA1
which must be created before it was signed. Stated mathematically:

 TSR2TCV > UTC1

EntityA now knows TSR1TCV and TSR2TCV bound UTC1. Stated mathematically:

 TSR1TCV < UTC1 < TSR2TCV

This association holds true if the TSN for TSR1 matches the TSN for TSR2. If some event occurs that causes
the TPM to create a new TSN and restart the TCV then EntityA must start the process all over again.

EntityA does not know when UTC1 occurred in the interval between TSR1TCV and TSR2TCV. In fact, the value
TSR2TCV minus TSR1TCV (TSRDELTA) is the amount of uncertainty to which a TCV value should be associated
with UTC1. Stated mathematically:

 TSRDELTA = TSR2TCV – TSR1TCV iff TSR1TSN = TSR2TSN

EntityA can obtains k1 the relationship between ticks and seconds using the GetCapabilities command.
EntityA also obtains k2 the possible errors per tick. EntityA now calculate DeltaTime which is the conversion
of ticks to seconds and the TSRDELTA. State mathematically:

 DeltaTime = (k1 * TSRDELTA) + (k2 * TSRDELTA)

To make the association between DeltaTime, UTC and TSRB note the following:

 DeltaTime = (k1*TSRDelta) + Drift = TimeChange + Drift

 Where ABSOLUTEVALUE(Drift)<k2*TSRDelta

(1) TSR1TCV < UTC1 < TSR2TCV

 True since you cannot sign something before it exists

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 88 of 150
 TCG PUBLISHED

(2) TSR1TCV < UTC1 < TSR1TCV + TSR2TCV-TSR1TCV <= TSR1TCV + DeltaTime (= TSR1TCV +TimeChange
+Drift)

 True because TSR1 and TSR2 are in the same tick session proved by the same TSN. (Note TimeChange is
positive!)

(3) 0 < UTC1-TSR1TCV < DeltaTime

 (Subtract TSR1TCV from all sides)

(4) 0 > TSR1TCV - UTC1 > -DeltaTime = -TimeChange - Drift

 (Multiply through by -1)

(5) TimeChange/2 > [TSR1TCV - (UTC1-TimeChange/2)] > -TimeChange/2 - Drift

 (add TimeChange/2 to all sides)

(6) TimeChange/2 + ABSOLUTEVALUE(Drift) > [TSR1TCV - (UTC1-TimeChange/2)]

> -TimeChange/2 - ABSOLUTEVALUE(Drift)

 Making the large side of an equality bigger, and potentially making the small side smaller.

(7) ABSOLUTEVALUE[TSR1TCV - (UTC1-TimeChange/2)] < TimeChange/2 +

ABSOLUTEVALUE(Drift)

 (Definition of Absolute Value, and TimeChange is positive)

From which we see that TSR1TCV is approximately UTC1-TimeChange/2 with a symmetric possible error of
TimeChange/2 + AbsoluteValue(Drift)

We can calculate this error as being less than k1*TSRDelta/2 + k2*TSRDelta.

EntityA now has the ability to associate UTC1 with TSBTSV and by allow others to know that BlobA was signed
at a certain time. First TSBTSN must equal TSR1TSN. This relationship allows EntityA to assert that TSRB
occurs during the same session as TSR1 and TSR2.

EntityA calculates HashTimeDelta which is the difference between TSR1TCV and TSRBTCV and the conversion
of ticks to seconds. HashTimeDelta includes the same k1 and k2 as calculated above. Stated mathematically:

 E = k2(TSR1TCV – TSRBTCV)

 HashTimeDelta = k1(TSR1TCV – TSRBTCV) + E

Now the following relationships hold:

(1) UTC1 – DeltaTime < TSRBTCV – (TSRBTCV – TSR1TCV) < UTC1

(2) UTC1 – DeltaTime < TSRBTCV + HashTimeDelta + E < UTC1

(3) UTC1 – HashTimeDelta – DeltaTime – E < TSRBTCV < UTC1 – HashTimeDelta + E

(4) TSRBTCV = (UTC1 – HashTimeDelta – DeltaTime/2) + (E + DeltaTime/2)

This has the correct properties

As DeltaTime grows so does the error bar (or the uncertainty of the time association)

As the difference between the time of the measurement and the time of the time stamp grows, so does the E
as a function of E is HashTimeDelta

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 89 of 150
 TCG PUBLISHED

18.4 Additional Comments and Questions
Start of informative comment:

Time Difference

If two things are time stamped, say at TCVs and TCVe (for TCV at start, TCV at end) then any entity can
calculate the time difference between the two events and will get:

 TimeDiff = k1*|TCVe – TCVs| + k2*|TCVe – TCVs|

This TimeDiff does not indicate what time the two events occurred at it merely gives the time between the
events. This time difference doesn’t require a Time Authority.

Why is TSN (tick session nonce) required?

Without it, there is no way to associate a Time Authority stamp with any TSV, as the TSV resets at the start of
every tick session. The TSN proves that the concatenation of TSV and TSN is unique.

How does the protocol prevent replay attacks?

The TPM signs the TSR sent to the TA. This TSR contains the unique combination of TSV and TSN. Since the
TSN is unique to a tick session and the TSV continues to increment any attempt to recreate the same TSR will
fail. If the TPM is reset such that the TSV is at the same value, the TSN will be a new value. If the TPM is not
reset then the TSV continues to increment and will not repeat.

How does EntityA know that the TSR1 that the TA signs is recent?

It doesn't. EntityA checks however to ensure that the TSN is the same in all TSR. This ensures that the values
are all related. If TSR1 is an old value then the HashTimeDelta will be a large value and the uncertainty of
the relation of the signing to the UTC will be large.

Why does associating a UTC time with a TSV take two steps?

This is because it takes some time between when a request goes to a time authority and when the response
comes. The protocol measures this time and uses it to create the time deltas. The relationship of TSV to UTC
is somewhere between the request and response.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 90 of 150
 TCG PUBLISHED

19. Context Management
Start of informative comment:

The TPM is a device that contains limited resources. Caching of the resources may occur without knowledge
or assistance from the application that loaded the resource. In version 1.1 there were two types of resources
that had need of this support keys and authorization sessions. Each type had a separate load and restore
operation. In version 1.2 there is the addition of transport sessions. To handle these situations generically 1.2
is defining a single context manager that all types of resources may use.

The concept is simple, a resource manager requests that wrapping of a resource in a manner that securely
protects the resource and only allows the restoring of the resource on the same TPM and during the same
operational cycle.

Consider a key successfully loaded on the TPM. The parent keys that loaded the key may have required a
different set of PCR registers than are currently set on the TPM. For example, the end result is to have key5
loaded. Key3 is protected by key2, which is protected by key1, which is protected by the SRK. Key1 requires
PCR1 to be in a certain state, key2 requires PCR2 to load and key3 requires PCR3. Now at some point in time
after key1 loaded key2, PCR1 was extended with additional information. If key3 is evicted then there is no
way to reload key3 until the platform is rebooted. To avoid this type of problem the TPM can execute context
management routines. The context management routines save key3 in its current state and allow the TPM to
restore the state without having to use the parent keys (key1 and key2).

There are numerous issues with performing context management on sessions. These issues revolve around the
use of the nonces in the session. If an attacker can successfully store, attack, fail and then reload the session
the attacker can repeat the attack many times.

The key that the TPM uses to encrypt blobs may be a volatile or non-volatile key. One mechanism would be
for the TPM to generate a new key on each TPM_Startup command. Another would be for the TPM to generate
the key and store it persistently in the TPM_PERSISTENT_DATA area.

The symetric key should be relatively the same strength as a 2048-bit RSA key. 128-bit AES or a full three key
triple DES would be appropriate.

End of informative comment.

1. Context management is a required function.

2. Execution of the context commands MUST NOT cause the exposure of any TPM shielded location.

3. The TPM MUST NOT allow the context saving of the EK or the SRK.

4. The TPM MAY use either symmetric or asymmetric encryption. For asymmetric encryption the TPM MUST
use a 2048 RSA key.

5. A wrapped session blob MUST only be loadable once. A wrapped key blob MAY be reloadable.

6. The TPM MUST support a minimum of 8 concurrent saved contexts other than keys. There is no minimum
or maximum number of concurrent saved key contexts.

7. All external session blobs (of type TPM_RT_TRANS or TPM_RT_AUTH) can be invalidated upon specific
request (via TPM_FlushXXX using TPM_RT_CONTEXT as resource type), this does not include session blobs
of type TPM_RT_KEY.

8. External session blobs are invalidated on TPM_Startup(ST_Clear) or on TPM_Startup(any) based on the
startup effects settings

a. Session blobs of type TPM_RT_KEY with the attributes of ParentPCR=FALSE and IsVolatile=FALSE
SHOULD not invalidated on TPM_Startup(any)

9. All external session invalidate automatically upon installation of a new owner due to the setting of a new
tpmProof.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 91 of 150
 TCG PUBLISHED

10. If the TPM enters failure mode ALL session blobs (including keys) MUST be invalidated

a. Invalidation includes ensuring that contextNonceKey and contextNonceSession will change when the
TPM recovers from the failure.

11. Attempts to restore a wrapped blob after the successful completion of TPM_Startup(ST_CLEAR) MUST fail.
The exception is a wrapped key blob which may be long-term and which MAY restore after a
TPM_Startup(ST_CLEAR).

12. The save and load context commands are the generic equivalent to the context commands in 1.1. Version
1.2 deprecates the following commands:

a. TPM_AuthSaveContext

b. TPM_AuthLoadContext

c. TPM_KeySaveContext

d. TPM_KeyLoadContext

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 92 of 150
 TCG PUBLISHED

20. Eviction
Start of informative comment:

The TPM has numerous resources held inside of the TPM that may need eviction. The need for eviction occurs
when the number or resources in use by the TPM exceed the available space. For resources that are hard to
reload (i.e. keys tied to PCR values) the outside entity should first perform a context save before evicting
items.

In version 1.1 there were separate commands to evict separate resource types. This new command set uses
the resource types defined for context saving and creates a generic command that will evict all resource
types.

End of informative comment.

1. The TPM MUST NOT flush the EK or SRK using this command.

2. Version 1.2 deprecates the following commands:

a. TPM_Terminate_Handle

b. TPM_Evict_Key

c. TPM_Reset

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 93 of 150
 TCG PUBLISHED

21. Session pool
Start of informative comment:

The TPM supports two types of sessions that use the rolling nonce protocol, authorization and transport.
These sessions require much of the same handling and internal storage by the TPM. To allow more flexibility
the internal storage for these sessions will be defined as coming from the same pool (or area).

The pool requires that three (3) sessions be available. The entities using the TPM can determine the usage
models of what sessions are active. This allows a TPM to have 3 authorization sessions or 3 transport sessions
at one time.

Using all available pool resources for transport sessions is not a very usable model. If all resources are in use
by transport there is no resources available for authorization sessions and hence no ability to execute any
commands requiring authorization. A more realistic model would be to have two transport sessions and one
authorization session. While this is an unrealistic model for actual execution there will be no requirement
that the TPM prevent this from happening. A model of how it could occur would be when there are two
applications running, both using 2 transport sessions and one authorization session. When switching between
the applications if the requirement was that only 2 transport sessions could be active the TSS that would
provide the context switch would have to ensure that the transport sessions were context saved first.

Sessions can be virtualized, so while the TPM may only have 3 loaded sessions, there may be an unlimited
number of context saved sessions stored outside the TPM.

End of informative comment.

1. The TPM MUST support a minimum of three (3) concurrent sessions. The sessions MAY be any mix of
authentication and transport sessions.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 94 of 150
 TCG PUBLISHED

22. Initialization Operations
Start of informative comment:

Initialization is the process where the TPM establishes an operating environment from a no power state.
Initialization occurs in many different flavors with PCR, keys, handles, sessions and context blobs all
initialized, reloaded or unloaded according to the rules and platform environment.

Initialization does not affect the operational characteristics of the TPM (like TPM Ownership).

Clear is the process of returning the TPM to factory defaults. The clear commands need protection from
unauthorized use and must allow for the possibility of changing Owners. The clear process requires
authorization to execute and locks to prevent unauthorized operation.

The clear functionality performs the following tasks:

Invalidate SRK. Invalidating the SRK invalidates all protected storage areas below the SRK in the hierarchy.
The areas below are not destroyed they just have no mechanism to be loaded anymore.

All TPM volatile and non-volatile data is set to default value except the endorsement key pair. The clear
includes the Owner-authorization data, so after performing the clear, the TPM has no Owner. The PCR values
are undefined after a clear operation.

The TPM shall return TPM_NOSRK until an Owner is set. After the execution of the clear command, the TPM
must go through a power cycle to properly set the PCR values.

The Owner has ultimate control of when a clear occurs.

The Owner can perform the TPM_OwnerClear command using the TPM Owner authorization. If the Owner
wishes to disable this clear command and require physical access to perform the clear, the Owner can issue
the TPM_DisableOwnerClear command.

During the TPM startup processing anyone with physical access to the machine can issue the TPM_ForceClear
command. This command performs the clear. The TPM_DisableForceClear disables the TPM_ForceClear
command for the duration of the power cycle. TSS startup code that does not issue the
TPM_DisableForceClear leaves the TPM vulnerable to a denial of service attack. The assumption is that the
TSS startup code will issue the TPM_DisableForceClear on each power cycle after the TSS determines that it
will not be necessary to issue the TPM_ForceClear command. The purpose of the TPM_ForceClear command is
to recover from the state where the Owner has lost or forgotten the TPM Ownership token.

The TPM_ForceClear must only be possible when the issuer has physical access to the platform. The
manufacturer of a platform determines the exact definition of physical access.

End of informative comment.

1. The TPM MUST support proper initialization. Initialization MUST properly configure the TPM to execute in
the platform environment.

2. Initialization MUST ensure that handles, keys, sessions, context blobs and PCR are properly initialized,
reloaded or invalidated according to the platform environment.

3. The description of the platform environment arrives at the TPM in a combination of TPM_Init and
TPM_Startup.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 95 of 150
 TCG PUBLISHED

23. HMAC digest rules
Start of informative comment:

The order of calculation of the HMAC is critical to being able to validate the authorization and parameters of
a command. All commands use the same order and format for the calculation.

A more exact representation of a command would be the following

 * TAG | LEN | ORD | HANDLES | DATA | AUTH1 (o) | AUTH2 (o) *

The text area for the HMAC calculation would be the concatenation of the following:

ORD || DATA

End of informative comment.

The HMAC digest of parameters uses the following order

1. Skip tag and length

2. Include ordinal. This is the 1S parameter in the HMAC column for each command

3. Skip handle(s). This includes key and other session handles

4. Include data and other parameters for the command. This starts with the 2S parameter in the HMAC
column for each command.

5. Skip all authorization values.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 96 of 150
 TCG PUBLISHED

24. Generic authorization session termination rules
Start of informative comment:

These rules are the generic rules that govern all authorization sessions, a specific session type may have
additional rules or modifications of the generic rules

End of informative comment.

1. A TPM SHALL unilaterally perform the actions of TPM_FlushSpecific for a session upon any of the following
events

a. “continueUse” flag in the authorization session is FALSE

b. Shared secret of the session in use to create the exclusive-or for confidentiality of data. Example is
TPM_ChangeAuth terminates the authorization session. TPM_ExecuteTransport does not terminate the
session due to protections inherent in transport sessions.

c. When the associated entity is invalidated

d. When the command returns a fatal error. This is due to error returns not setting a nonceEven.
Without a new nonceEven the rolling nonces sequence is broken hence the TPM MUST terminate the
session.

e. Failure of an authorization check at the start of the command

f. Execution of TPM_Startup(ST_CLEAR)

2. The TPM MAY perform the actions of TPM_FlushSpecific for a session upon the following events

a. Execution of TPM_Startup(ST_STATE)

3. The TPM MUST perform the actions of TPM_FlushSpecific for a DSAP session upon the following events:

a. If the DSAP session uses PCR registers AND an indicated PCR register changes it’s value (through
TPM_Extend or TPM_PCRReset)

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 97 of 150
 TCG PUBLISHED

25. PCR Grand Unification Theory
Start of informative comment:

This section discusses the unification of PCR definition and use with locality.

The PCR allow the definition of a platform configuration. With the addition of locality, the meaning of a
configuration is somewhat larger. This section defines how the two combine to provide the TPM user
information relative to the platform configuration.

These are the issues regarding PCR and locality at this time

Definition of configuration

A configuration is the combination of PCR, PCR attributes and the locality.

Passing the creators configuration to the user of data

For many reasons, from the creator’s viewpoint and the user’s viewpoint, the configuration in use by the
creator is important information. This information needs transmitting to the user with the data and with
integrity.

The configuration must include the locality and may not be the same configuration that will use the data.
This allows one configuration to seal a value for future use and the end user to know the genealogy of where
the data comes from.

Definition of “Use”

See the definition of TPM_PCR_ATTRIBUTES for the attributes and the normative statements regarding the
use of the attributes. The use of a configuration is when the TPM needs to ensure that the proper platform
configuration is present. The first example is for Unseal, the TPM must only release the information sealed if
the platform configuration matches the configuration specified by the seal creator. Here the use of locality is
implicit in the PCR attributes, if PCR8 requires locality 2 to be present then the seal creator ensures that
locality 2 is asserted by defining a configuration that uses PCR8.

The creation of a blob that specifies a configuration for use is not a “use” itself. So the SEAL command does
is not a use for specifying the use of a PCR configuration.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 98 of 150
 TCG PUBLISHED

By using the “new style” or TPM_PCR_INFO_LONG structure the user can determine that Blob2 is different
that Blob3.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 99 of 150
 TCG PUBLISHED

Case B is the only failure and this shows the use of the locality modifier and PCR locality attribute.

Additional attempts are obvious failures, config3 and config4 are unable to unseal any of the 4 blobs.

One example is illustrative of the problems of just specifying locality without an accompanying PCR. Assume
Blob5 which specifies a dar of config1 and a locality 4 modifier. Now either config2 or config4 can unseal
Blob5. In fact there is no way to restrict ANY process that gains access to locality 4 from performing the
unseal. As many platforms will have no restrictions as to which process can load in locality 4 there is no
additional benefit of specifying a locality modifier. If the sealer wants protections, they need to specify a
PCR that requires a locality modifier.

Defining locality modifiers dynamically

This feature would enable the platform to specify how and when a locality modifier applies to a PCR. The
current definition of PCR attributes has the values set in TPM manufacturing and static for all TPM in a
specific platform type (like a PC).

Defining dynamic attributes would make the use of a PCR very difficult. The sealer would have to have some
way of ensuring that their wishes were enforced and challengers would have to pay close attention to the
current PCR attributes. For these reasons the setting of the PCR attributes is defined as a static operation
made during the platform specific specification.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 100 of 150
 TCG PUBLISHED

25.1 Validate Key for use
Start of informative comment:

The following shows the order and checks done before the use of a key that has PCR or locality restrictions.

Note that there is no check for the PCR registers on the DSAP session. This is due to the fact that DSAP checks
for the continued validity of the PCR that are attached to the DSAP and any change causes the invalidation of
the DSAP session.

The checks do validate the locality of the DSAP session as the DSAP

End of informative comment.

1. If the authorization session is DSAP

a. If the DSAP -> localityAtRelease is not 0x1F (or in other words some localities are not allowed)

i. Validate that TPM_VOLATILE_FLAGS -> localityModifier is matched by DSAP -> pcrInfo ->
localityAtRelease, on mismatch return TPM_BAD_LOCALITY

ii. If the DSAP points to an ordinal delegation

(1) Check that the DSAP authorizes the use of the intended ordinal

iii. If the DSAP points to a key delegation

(1) Check that the DSAP authorizes the use of the key

2. Set LK to the loaded key that is being used

3. If LK -> pcrInfoSize is not 0

a. If LK -> pcrInfo -> releasePCRSelection identifies the use of one or more PCR

i. Calculate H1 a TPM_COMPOSITE_HASH of the PCR selected by LK -> pcrInfo ->
releasePCRSelection

ii. Compare H1 to LK -> pcrInfo -> digestAtRelease on mismatch return TPM_WRONGPCRVAL

b. If localityAtRelease is NOT 0x1fF

i. Validate that TPM_VOLATILE_FLAGS -> localityModifier is matched by LK -> pcrInfo ->
localityAtRelease on mismatch return TPM_BAD_LOCALITY

4. Allow use of the key

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 101 of 150
 TCG PUBLISHED

26. Non Volatile Storage
Start of informative comment:

The TPM contains protected non-volatile storage. There are many uses of this type of area; however, a TPM
needs to have a defined set of operations that touch any protected area. The idea behind these instructions is
to provide an area that the manufacturers and owner can use for storing information in the TPM.

The TCG will define a limited set of information that it sees a need of storing in the TPM. The TPM and
platform manufacturer may add additional areas.

The NV storage area has a limited use before it will no longer operate, hence the NV commands are under
TPM Owner control.

A defined set of indexes are available when no TPM Owner is present to allow TPM and platform
manufacturers the ability to fill in values before a TPM Owner exists.

To locate if an index is available, use TPM_GetCapability to return the index and the size of the are in use by
the index.

The area may not be larger than the TPM input buffer. The TPM will report the maximum size available to
allocate.

The storage area is an opaque area to the TPM. The TPM, other than providing the storage, does not review
the internals of the area.

To SEAL a blob the creator of the area specifies the use of PCR registers to read the value. This is the exact
property of SEAL.

To obtain a signed indication of what is in a NV store area the caller would setup a transport session with
logging on and then get the signed log. The log shows the parameters so the caller can validate that the TPM
holds the value.

There is an attribute, for each index, that defines the expected write scheme for the index. The TPM may
handle data storage differently based on the write scheme attribute that defines the expected for the index.
Whenever possible the NV memory should be allocated with the write scheme attribute set to update as one
block and not as individual bytes.

End of informative comment.

1. The TPM MUST support the NV commands. The TPM MUST support the NV area as defined by the
TPM_NV_INDEX values.

2. The TPM MAY manage the storage area using any allocation and garbage collection scheme.

3. To remove an area from the NV store the TPM owner would use the TPM_NV_DefineSpace command with
a size of 0. Any authorized user can change the value written in the NV store.

4. The TPM MUST treat the NV area as a shielded location.

a. The TPM does not provide any additional protections (like additional encryption) to the NV area.

5. If a write operation is interrupted, then the TPM makes no guarantees about the data stored at the
specified index. It MAY be the previous value, MAY be the new value or MAY be undefined or
unpredictable. After the interruption the TPM MAY indicate that the index contains unpredictable
information.

a. The TPM MUST ensure that in case of interruption of a write to an index that all other indexes are not
affected

6. Minimum size of NV area is platform specific. The maximum area is TPM vendor specific.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 102 of 150
 TCG PUBLISHED

26.1 NV storage design principles
Start of informative comment:

This section lists the design principles that motivate the NV area in the TPM. There was the realization that
the current design made use of NV storage but not necessarily efficiently. The DIR, BIT and other commands
placed demands on the TPM designer and required areas that while allowing for flexible use reserved space
most likely never used (like DIR for locality 1).

The following are the design principles that drive the function definitions.

1. Provide efficient use of NV area on the TPM. NV storage is a very limited resource and data stored in the
NV area should be as small as possible.

2. The TPM does not control, edit, validate or manipulate in any manner the information in the NV store. The
TPM is merely a storage device. The TPM does enforce the access rules as set by the TPM Owner.

3. Allocation of the NV area for a specific use must be under control of the TPM Owner.

4. The TPM Owner, when defining the area to use, will set the access and use policy for the area. The TPM
Owner can set authorization values, delegations, PCR values and other controls on the access allowed to the
area.

5. There must be a capability to allow TPM and platform manufacturers to use this area without a TPM Owner
being present. This allows the manufacturer to place information into the TPM without an onerous
manufacturing flow. Information in this category would include EK credential and platform credential.

6. The management and use of the NV area should not require a large number of ordinals.

7. The management and use of the NV area should not introduce new operating strategies into the TPM and
should be easy to implement.

End of informative comment.

26.1.1 NV Storage use models
Start of informative comment:

This informative section describes some of the anticipated use models and the attributes a user of the
storage area would need to set.

Owner authorized for all access

TPM_NV_DefineSpace: attributes = PER_OWERREAD || PER_OWNERWRITE

WriteValue(TPM Owner Auth, data)

ReadValue(TPM Owner Auth, data)

Set authorization value

TPM_NV_DefineSpace: attributes = PER_AUTHREAD || PER_AUTHWRITE, auth = authValue

WriteValue(authValue, data)

ReadValue(authValue, data)

Write once, only way to change is to delete and redefine

TPM_NV_DefineSpace: attributes = PER_WRITEDEFINE

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 103 of 150
 TCG PUBLISHED

WriteValue(size = x, data) // successful

WriteValue(size = 0) // locks

WriteValue(size = x) // fails

…

TPM_Startup(ST_Clear) // Does not affect lock

WriteValue(size = x, data) // fails

Write until specific index is locked, lock reset on Startup(ST_Clear)

TPM_NV_DefineSpace: index = 3, attributes = PER_WRITE_STCLEAR

TPM_NV_DefineSpace: index = 5, attributes = PER_WRITE_STCLEAR

WriteValue(index = 3, size = x, data) // successful

WriteValue(index = 5, size = x, data) // successful

WriteValue(index = 3, size = 0) // locks

WriteValue(index = 3, size = x, data) // fails

WriteValue(index = 5, size = x, data) // successful

…

TPM_Startup(ST_Clear) // clears lock

WriteValue(index = 3, size = x, data) // successful

WriteValue(index = 5, size = x, data) // successful

Write until index 0 is locked, lock reset by Startup(ST_Clear)

TPM_NV_DefineSpace: attributes = PER_GLOBALLOCK, index = 5

TPM_NV_DefineSpace: attributes = PER_GLOBALLOCK, index = 3

WriteValue(index = 3, size = x, data) // successful

WriteValue(index = 5, size = x, data) // successful

WriteValue(index = 0) // sets SV -> bGlobalLock to TRUE

WriteValue(index = 3, size = x, data) // fails

WriteValue(index = 5, size = x, data) // fails

…

TPM_Startup(ST_Clear) // clears lock

WriteValue(index = 3, size = x, data) // successful

WriteValue(index = 5, size = x, data) // successful

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 104 of 150
 TCG PUBLISHED

26.2 Use of NV storage during manufacturing
Start of informative comment:

The TPM needs the ability to write values to the NV store during manufacturing. It is possible that the values
written at this time would require authorization during normal TPM use. The actual enforcement of these
authorizations during manufacturing would cause numerous problems for the manufacturer.

The TPM will not enforce the NV authorization restrictions until the execution of a TPM_DefineSpace with the
handle of TPM_NV_INDEX_LOCK.

End of informative comment.

1. The TPM MUST NOT enforce the NV authorizations (auth values, PCR etc.) prior to the execution of
TPM_DefineSpace with an index of TPM_NV_INDEX_LOCK

a. While the TPM is not enforcing NV authorizations, the TPM SHALL allow the use of TPM_DefineSpace
in any operational state (disabled, deactivated)

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 105 of 150
 TCG PUBLISHED

27. Delegation Model
Start of informative comment:

The TPM Owner is an entity with a single “super user” privilege to control TPM operation. Thus if any aspect
of a TPM requires management, the TPM Owner must perform that task himself or reveal his privilege
information to another entity. This other entity thereby obtains the privilege to operate all TPM controls, not
just those intended by the Owner. Therefore the Owner often must have greater trust in the other entity
than is strictly necessary to perform an arbitrary task.

This delegation model addresses this issue by allowing delegation of individual TPM Owner privileges (the
right to use individual Owner authorized TPM commands) to individual entities, which may be trusted
processes.

Basic requirements:

Consumer user does not need to enter or remember a TPM Owner password. This is an ease of use and
security issue. Not remembering the password may lead to bad security practices, increased tech support
calls and lost data.

Role based administration and separation of duty. It should be possible to delegate just enough Owner
privileges to perform some administration task or carry out some duty, without delegating all Owner
privileges.

TPM should support multiple trusted processes. When a platform has the ability to load and execute
multiple trusted processes then the TPM should be able to participate in the protection of secrets and proper
management of the processes and their secrets. In fact, the TPM most likely is the root of storage for these
values. The TPM should enable the proper management, protection and distribution of values held for the
various trusted processes that reside on the same platform.

Trusted processes may require restrictions. A fundamental security tenet is the principle of least privilege,
that is, to limit process functionality to only the functions necessary to accomplish the task. This delegation
model provides a building block that allows a system designer to create single purpose processes and then
ensure that the process only has access to the functions that it requires to complete the task.

Maintain the current authorization structure and protocols. There is no desire to remove the current TPM
Owner and the protocols that authorize and manage the TPM Owner. The capabilities are a delegation of TPM
Owner responsibilities. The delegation allows the TPM Owner to delegate some or all of the actions that a
TPM Owner can perform. The TPM Owner has complete control as to when and if the capability delegation is
in use.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 106 of 150
 TCG PUBLISHED

27.1 Table Requirements
Start of informative comment:

No ocean front property in table – We want the table to be virtually unlimited in size. While we need some
storage, we do not want to pick just one number and have that be the min and max. This drives the need for
the ability to save, off the TPM, delegation elements.

Revoking a delegation, does not affect other delegations – The TPM Owner may, at any time, determine
that a delegation is no longer appropriate. The TPM Owner needs to be able to ensure the revocation of all
delegations in the same family. The TPM Owner also wants to ensure that revocation done in one family does
not affect any other family of delegations.

Table seeded by OEM – The OEM should do the seeding of the table during manufacturing. This allows the
OEM to ship the platform and make it easy for the platform owner to startup the first time. The definition of
manufacturing in this context includes any time prior to or including the time the user first turns on the
platform.

Table not tied to a TPM owner – The table is not tied to the existence of a TPM owner. This facilitates the
seeding of the table by the OEM.

External delegations need authorization and assurance of revocation – When a delegation is held external
to the TPM, the TPM must ensure authorization of the delegation when loading the delegation. Upon
revocation of a family or other family changes the TPM must ensure that prior valid delegations are not
successfully loaded.

90% case, no need for external store – The normal case should be that the platform does not need to worry
about having external delegations. This drives the need for some NV storage to hold a minimum number of
table rows.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 107 of 150
 TCG PUBLISHED

27.2 How this works
Start of informative comment:

The existing TPM owner authorization model is that certain TPM commands require the authorization of the
TPM Owner to operate. The authorization value is the TPM Owners token. Using the token to authorize the
command is proof of TPM Ownership. There is only one token and knowledge of this token allows all
operations that require proof of TPM Ownership.

This extension allows the TPM Owner to create a new authorization value and to delegate some of the TPM
Ownership rights to the new authorization value.

The use model of the delegation is to create an authorization session (DSAP) using the delegated
authorization value instead of the TPM Owner token. This allows delegation to work without change to any
current command.

The intent is to permit delegation of selected Owner privileges to selected entities, be they local or remote,
separate from the current software environment or integrated into the current software environment. Thus
Owner privileges may be delegated to entities on other platforms, to entities (trusted processes) that are
part of the normal software environment on the Owner’s platform, or to a minimalist software environment
on the Owner’s platform (created by booting from a CDROM, or special disk partition), for example.

Privileges may be delegated to a particular entity via definition of a particular process on the Owner’s
platform (by dictating PCR values), and/or by stipulating a particular authorization value. The resultant
TPM_DELEGATE_OWNER_BLOB and any authorization value must be passed by the Owner to the chosen entity.

Delegation to an external entity (not on the Owner’s platform) probably requires an authorization value and a
NULL PCR selection. (But the authorization value might be sealed to a desired set of PCRs in that remote
platform.)

Delegation to a trusted process provided by the local OS requires a PCR that indicates the trusted process.
The authorization token should be a fixed value (any well known value), since the OS has no means to safely
store the authorization token without sealing that token to the PCR that indicates the trusted process. It is
suggested that the value 0x111…111 be used.

Delegation to a specially booted entity requires either a PCR or an authorization token, and preferably both,
to recognize both the process and the fact that the Owner wishes that process to execute.

The central delegation data structure is a set of tables. These tables indicate the command ordinals
delegated by the TPM Owner to a particular defined environment. The tables allow the distinction of
delegations belonging to different environments.

The TPM is capable of storing internally a few table elements to enable the passing of the delegation
information from an entity that has no access to memory or storage of the defined environment.

The number of delegations that the tables can hold is a dynamic number with the possibility of adding or
deleting entries at any time. As the total number is dynamic, and possibly large, the TPM provides a
mechanism to cache the delegations. The cache of a delegation must include integrity and confidentiality.
The term for the encrypted cached entity is blob. The blob contains a counter (verificationCount) validated
when the TPM loads the blob.

An Owner uses the counter mechanism to prevent the use of undesirable blobs; they increment
verificationCount inside the TPM and insert the current value of verificationCount into selected table
elements, including temporarily loaded blobs. (This is the reason why a TPM must still load a blob that has an
incorrect verificationCount.) An Owner can verify the delegation state of his platform (immediately after
updating verificationCount) by keeping copies of the elements that have just been given the current value of
verificationCount, signing those copies, and sending them to a third party.

Verification probably requires interaction with a third party because acceptable table profiles will change
with time and the most important reason for verification is suspicion of the state of a TOS in a platform. Such

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 108 of 150
 TCG PUBLISHED

suspicion implies that the verification check must be done by a trusted security monitor (perhaps separate
trusted software on another platform or separate trusted software on CDROM, for example). The signature
sent to the third party must include a freshness value, to prevent replay attacks, and the security monitor
must verify that a response from the third party includes that freshness value. In situations where the highest
confidence is required, the third party could provide the response by an out-of-band mechanism, such as an
automated telephone service with spoken confirmation of acceptability of platform state and freshness value.

A challenger can verify an entire family using a single transport session with logging, that increments the
verification count, updates the verification count in selected blobs, reads the tables and obtains a single
transport session signature over all of the blobs in a family.

If no Owner is installed, the delegation mechanisms are inoperative and third party verification of the tables
is impossible, but tables can still be administered and corrected. (See later for more details.)

To perform an operation using the delegation the entity establishes an authorization session and uses the
delegated authorization value for all HMAC calculations. The TPM validates the authorization value, and in
the case of defined environments checks the PCR values. If the validation is successful, the TPM then
validates that the delegation allows the intended operation.

There can be at least two delegation rows stored in non-volatile storage inside a TPM, and these may be
changed using Owner privilege or delegated Owner privilege. Each delegation table row is a member of a
family, and there can be at least eight family rows stored in non-volatile storage inside a TPM. An entity
belonging to one family can be delegated the privilege to create a new family and edit the rows in its own
family, but no other family.

In addition to tying together delegations, the family concept and the family table also provides the
mechanism for validation and revocation of exported delegate table rows, as well as the mechanism for the
platform user to perform validation of all delegations in a family (see section XX).

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 109 of 150
 TCG PUBLISHED

27.3 Family Table
Start of informative comment:

The family table has three main purposes.

1 - To provide for the grouping of rows in the TPM_DELEGATE_TABLE; entities identified in delegate table
rows as belonging to the same family can edit information in the other delegate table rows with the same
family ID. This allows a family to manage itself and provides an easier mechanism during upgrades.

2 - To provide the validation and revocation mechanism for exported TPM_DELEGATE_ROWS and those stored
on the TPM in the delegation table

3 - To provide the ability to perform validation of all delegations in a family

The family table must have eight rows, and may have more. The maximum number of rows is TPM vendor-
defined and is available using the TPM_GetCapability command.

As the family table has a limited number of rows, there is the possibility that this number could be
insufficient. However, the ability to create a virtual amount of rows, like done for the TPM_DELEGATE_TABLE
would create the need to have all of the validation and revocation mechanisms that the family table provides
for the delegate table. This could become a recursive process, so for this version of the specification, the
recursion stops at the family table.

The family table contains four pieces of information: the family ID, the family label, the family verification
count, and the family flags.

The family ID is a 32-bit value that provides a sequence number of the families in use. The family ID resets
each time a new TPM Owner is established. With the value changing on each TPM owner change, the value
does not have to be a large value.

The family label is a one-byte field that family table manager software would use to help identify the
information associated with the family. Software must be able to map the numeric value associated with
each family to the ASCII-string family name displayable in the user interface.

The family verification count is a 32-bit sequence number that identifies the last outside verification and
attestation of the family information.

Initialization of the family table occurs by using the TPM_Delegate_Manage command with the
TPM_FAMILY_CREATE option.

The verificationCount parameter enables a TPM to check that all rows of a family in the delegate table are
approved (by an external verification process), even if rows have been stored off-TPM.

The family flags allow the use and administration of the family table row, and its associated delegate table
rows.

Row contents

Family ID – 32-bits

Row label – One byte

Family verification count – 32-bits

Family enable/disable use/admin flags – 32-bits

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 110 of 150
 TCG PUBLISHED

27.4 Delegate Table
Start of informative comment:

The delegate table has three main purposes, from the point of view of the TPM. This table holds:

The list of ordinals allowable for use by the delegate

The identity of a process that can use the ordinal list

The authorization value to use the ordinal list

The delegate table has a minimum of two (2) rows; the maximum number of rows is TPM vendor-defined and
is available using the TPM_GetCapability command. Each row represents a delegation and, optionally, an
assignment of that delegation to an identified trusted process.

The non-volatile delegate rows permit an entity to pass delegation rows to a software environment without
regard to shared memory between the entity and the software environment. The size of the delegate table
does not restrict the number of delegations because TPM_Delegate_CreateOwnerDelegation can create blobs
for use in a DSAP session, bypassing the delegate table.

The TPM Owner controls the tables that control the delegations, but (recursively) the TPM Owner can
delegate the management of the tables to delegated entities. Entities belonging to a particular group (family)
of delegation processes may edit delegate table entries that belong to that family.

After creation of a delegation entry there is no restriction on the use of the delegation in a properly
authorized session. The TPM Owner has properly authorized the creation of the delegation so the use of the
delegation occurs whenever the delegate wishes to use it.

The rows of the delegate table held in non-volatile storage are only changeable under TPM Owner
authorization.

The delegate table contains six pieces of information: PCR information, the authorization value for the
delegated capabilities, the delegation label, the family ID, the verification count, and a profile of the
capabilities that are delegated to the trusted process identified by the PCR information.

Row Elements

ASCII label – Label that provides information regarding the row. This is not a sensitive item.

Family ID – The family that the delegation belongs to; this is not a sensitive item.

Verification count – Specifies the version, or generation, of this row; version validity information is in the
family table. This is not a sensitive value.

Delegated capabilities – The capabilities granted, by the TPM Owner, to the identified process. This is not a
sensitive item.

Authorization and Identity

The creator of the delegation sets the authorization value and the PCR selection. The creator is responsible
for the protection and dissemination of the authorization value. This is a sensitive value.

End of informative comment.

1. The TPM_DELEGATE_TABLE MUST have at least two (2) rows; the maximum number of table rows is TPM-
vendor defined and MUST be reported in response to a TPM_GetCapabilites command

2. The authorization value and the PCR selection must be set by the creator of the delegation

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 111 of 150
 TCG PUBLISHED

27.5 Delegation Administration Control
Start of informative comment:

The delegate tables (both family and delegation) present some control problems. The tables must be
initialized by the platform OEM, administered and controlled by the TPM Owner, and reset on changes of TPM
Ownership. To provide this level of control there are three phases of administration with different functions
available in the phases.

The three phases of table administration are; manufacturing (P1), no-owner (P2) and owner present (P3).
These three phases allow different types of administration of the delegation tables.

Manufacturing (P1)

A more accurate definition of this phase is open, un-initialized and un-owned. It occurs after TPM
manufacturing and as a result of TPM_OwnerClear or TPM_ForceClear.

In P1 TPM_Delegate_Manage can initialize and manage non-volatile family rows in the TPM. TPM_
Delegate_LoadOwnerDelegation can load non-volatile delegation rows in the TPM.

Attacks that attempt to burnout the TPM’s NV storage are frustrated by the NV store’s own limits on the
number of writes when no Owner is installed.

No-Owner (P2)

This phase occurs after the platform has been properly setup. The setup can occur in the platform
manufacturing flow, during the first boot of the platform or at any time when the platform owner wants to
lock the table settings down. There is no TPM Owner at this time.

TPM_Delegate_Manage locks both the family and delegation rows. This lock can be opened only by the Owner
(after the Owner has been installed, obviously) or by the act of removing the Owner (even if no Owner is
installed). Thus locked tables can be unlocked by asserting Physical Presence and executing TPM_ForceClear,
without having to install an Owner.

In P2, the relevant TPM_Delegate_xxx commands all return the error TPM_DELEGATE_LOCKED. This is not an
issue as there is no TPM Owner to delegate commands, so the inability to change the tables or create
delegations does not affect the use of the TPM.

Owned (P3)

In this phase, the TPM has a TPM Owner and the TPM Owner manages the table as the Owner sees fit. This
phase continues until the removal of the TPM Owner.

Moving from P2 to P3 is automatic upon establishment of a TPM Owner. Removal of the TPM Owner
automatically moves back to P1.

The TPM Owner always has the ability to administer any table. The TPM Owner may delegate the ability to
manipulate a single family or all families. Such delegations are operative only if delegations are enabled.

End of informative comment.

1. When DelegateAdminLock is TRUE the TPM MUST disallow any changes to the delegate tables

2. With a TPM Owner installed, the TPM Owner MUST authorize all delegate table changes

27.5.1 Control in Phase 1
Start of informative comment:

The TPM starts life in P1. The TPM has no owner and the tables are empty. It is desirable for the OEM to
initialize the tables to allow delegation to start immediately after the Owner decides to enable delegation.
As the setup may require changes and validation, a simple mechanism of writing to the area once is not a
valid option.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 112 of 150
 TCG PUBLISHED

TPM_Delegate_Manage and TPM_Delegate_LoadOwnerDelegation allow the OEM to fill the table, read the
public parts of the table, perform reboots, reset the table and when finally satisfied as to the state of the
platform, lock the table.

Alternatively, the OEM can leave the tables NULL and turn off table administration leaving the TPM in an
unloaded state waiting for the eventual TPM Owner to fill the tables, as they need.

Flow to load tables

Default values of DelegateAdminLock are set either during manufacturing or are the result of
TPM_OwnerClear or TPM_ForceClear.

TPM_Delegate_ManageTable verifies that DelegateAdminLock is FALSE and that there is no TPM Owner. The
command will therefore load or manipulate the family tables as specified in the command.

TPM_Delegate_LoadOwnerDelegation verifies that DelegateAdminLock is FALSE and no TPM_Owner is present.
The command loads the delegate information specified in the command.

End of informative comment.

27.5.2 Control in Phase 2
Start of informative comment:

In phase 2, no changes are possible to the delegate tables. The platform owner must install a TPM Owner and
then manage the tables, or use TPM_ForceClear to revert to phase 1.

End of informative comment.

27.5.3 Control in Phase 3
Start of informative comment:

The TPM_DELEGATE_TABLE requires commands that manage the table. These commands include filling the
table, turning use of the table on or off, turning administration of the table on or off, and using the table.

The commands are:

TPM_Delegate_Manage – Manages the family table on a row-by-row basis: creates a new family,
enables/disables use of a family table row and delegate table rows that share the same family ID,
enables/disables administration of a family’s rows in both the family table and the delegate table, and
invalidates an existing family.

TPM_Delegate_CreateOwnerDelegation increments the family verification count (if desired) and delegates
the Owner’s privilege to use a set of command ordinals, by creating a blob. Such blobs can be used as input
data for TPM_DSAP or TPM_Delegate_LoadOwnerDelegation. Incrementing the verification count and creating
a delegation must be an atomic operation. Otherwise no delegations are operative after incrementing the
verification count.

TPM_Delegate_LoadOwnerDelegation loads a delegate blob into a non-volatile delegate table row, inside
the TPM.

TPM_Delegate_ReadTable is used to read from the TPM the public contents of the family and delegate tables
that are stored on the TPM.

TPM_UpdateVerification sets the verificationCount in an entity (a blob or a delegation row) to the current
family value, in order that the delegations represented by that entity will continue to be accepted by the
TPM.

TPM_VerifyDelegation loads a delegate blob into the TPM, and returns success or failure, depending on
whether the blob is currently valid.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 113 of 150
 TCG PUBLISHED

TPM_DSAP – opens a deferred authorization session, using either an input blob (created by
TPM_Delegate_CreateOwnerDelegation) or a cached blob (loaded by TPM_Delegate_LoadOwnerDelegation
into one of the TPM’s non-volatile delegation rows).

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 114 of 150
 TCG PUBLISHED

27.6 Family Verification
Start of informative comment:

The platform user may wish to have confirmation that the delegations in use provide a coherent set of
delegations. This process would require some evaluation of the processes granted delegations. To assist in
this confirmation the TPM provides a mechanism to group all delegations of a family into a signed blob. The
signed blob allows the verification agent to look at the delegations, the processes involved and make an
assessment as the validity of the delegations. The third party then sends back to the platform owner the
results of the assessment.

To perform the creation of the signed blob the platform owner needs the ability to group all of the
delegations of a single family into a transport session. The platform owner also wants an assurance that no
management of the table is possible during the verification.

This verification does not prove to a third party that the platform owner is not cheating. There is nothing to
prevent the platform owner from performing the validation and then adding an additional delegation to the
family.

Here is one example protocol that retrieves the information necessary to validate the rows belonging to a
particular family. Note that the local method of executing the protocol must prevent a man-in-the-middle
attack using the nonce supplied by the user.

The TPM Owner can increment the family verification count or use the current family verification count.
Using the current family verification count carries the risk that unexamined delegation blobs permit
undesirable delegations. Using an incremented verification count eliminates that risk. The entity gathering
the verification data requires Owner authorization or access to a delegation that grants access to transport
session commands, plus other commands depending on whether verificationCount is to be incremented. This
delegation could be a trusted process that can use the delegations because of its PCR measurements, a
remote entity that can use the delegations because the Owner has sent it a TPM_DELEGATE_OWNER_BLOB
and authorization value, or the host platform booted from a CDROM that can use the delegations because of
its PCR measurements, and TPM_DELEGATE_OWNER_BLOB and authorization value submitted by the Owner,
for example.

Verification using the current verificationCount

The gathering entity requires access to a delegation that grants access to at least the ordinals to perform a
transport session, plus TPM_Delegate_ReadTable and TPM_Delegate_VerifyDelegation.

The TPM Owner creates a transport session with the “no other activity” attribute set. This ensures
notification if other operations occur on the TPM during the validation process. (If other operations do occur,
the validation processes may have been subverted.) All subsequent commands listed are performed using the
transport session.

TPM_Delegate_ReadTable displays all public values (including the permissions and PCR values) in the TPM.

TPM_Delegate_VerifyDelegation loads each cached blob, with all public values (including the permissions and
PCR values) in plain text.

After verifying all blobs, TPM_ReleaseTransportSigned signs the list of transactions.

The gathering entity sends the log of the transport session plus any supporting information to the validation
entity, which evaluates the signed transport session log and informs the platform owner of the result of the
evaluation. This could be an out-of-band process.

Verification using an incremented verificationCount

The gathering entity requires Owner authorization or access to a delegation that grants access to at least the
ordinals to perform a transport session, plus TPM_Delegate_CreateOwnerDelegation,
TPM_Delegate_ReadTable, and UpdateVerification.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 115 of 150
 TCG PUBLISHED

The TPM Owner creates a transport session with the “no other activity” attribute set.

To increment the count the TPM Owner (or a delegate) must use TPM_Delegate_CreateOwnerDelegation with
increment == TRUE. If the gathering entity does not have the Owner authorization token,
TPM_Delegate_CreateOwnerDelegation must also create a TPM_DELEGATE_OWNER_BLOB that is passed (by
some out-of-band mechanism) to the gathering entity. That blob permits creation of new delegations or
approval of existing tables and blobs. That delegation must set the PCRs of the desired (local) process and
the desired authorization value of the process. As noted previously, authorization values should be a fixed
value if the gathering entity is a trusted process that is part of the normal software environment.

If new delegations are to be created, TPM_Delegate_CreateOwnerDelegation must be used with increment
== FALSE.

If existing blobs and delegation rows are to be reapproved, TPM_Delegate_UpdateVerification must be used
to install the new value of verificationCount into those existing blobs and non-volatile rows. This exposes the
blobs’ public information (including the permissions and PCR values) in plain text to the transport session.

TPM_Delegate_ReadTable then exposes all public values (including the permissions and PCR values) of tables
to the transport session.

Again, after verifying all blobs, TPM_ReleaseTransportSigned signs the list of transactions.

 End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 116 of 150
 TCG PUBLISHED

27.7 Use of commands for different states of TPM
Start of informative comment:

This section contains a table that maps the family and delegation command use to the different states of the
TPM (Activated, Enabled, and so on).

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 117 of 150
 TCG PUBLISHED

27.8 Delegation Authorization Values
Start of informative comment:

This section describes why, when a PCR selection is set, the authorization value may be a fixed value, and,
when the PCR selection is null, the delegation creator must select an authorization value.

A PCR value is an indication of a particular (software) environment in the local platform. Either that PCR
value indicates a trusted process or not. If the trusted process is to execute automatically, there is no point
in allocating a meaningful authorization value. (The only way the trusted process could store the
authorization value is to seal it to the process’s PCR values, but the delegation mechanism is already
checking the process’s PCR values.) If execution of the trusted process is dependent upon the wishes of
another entity (such as the Owner), the authorization value should be a meaningful (private) value known
only to the TPM, the Owner, and that other entity. Otherwise the authorization value should be a fixed, well
known, value.

If the delegation is to be controlled from a remote platform, these simple delegation mechanisms provide no
means for the platform to verify the PCRs of that remote platform, and hence access to the delegation must
be based solely upon knowledge of the authorization value.

End of informative comment.

27.8.1 Using the authorization value
Start of informative comment:

To use a delegation the TPM will enforce any PCR selection on use. The use definition is any command that
uses the delegation authorization value to take the place of the TPM Owner authorization.

PCR Selection defined

In this case, the delegation has a PCR selection structure defined. Each time the TPM uses the delegation
authorization value instead of the TPM Owner value the TPM would validate that the current PCR settings
match the settings held in the delegation structure. The PCR selection includes the definition of localities and
checks of locality occur with the checking of the PCR values. The TPM enforces use of the correct
authorization value, which may or may not be a meaningful (private) value.

PCR selection NULL

In this case, the delegation has no PCR selection structure defined. The TPM does not enforce any particular
environment before using the authorization value. Mere knowledge of the value is sufficient.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 118 of 150
 TCG PUBLISHED

27.9 DSAP description
Start of informative comment:

The DSAP opens a deferred auth session, using either a TPM_DELEGATE_BLOB as input parameter or a
reference to the TPM_DELEGATE_TABLE_ROW, stored inside the TPM. The DSAP command creates an
ephemeral secret to authenticate a session. The purpose of this section is to illustrate the delegation of user
keys or TPM Owner authorization by creating and using a DSAP session without regard to a specific command.

A key defined for a certain usage (e.g. TPM_KEY_IDENTITY) can be applied to different functions within the
use model (e.g. TPM_Quote or TPM_CertifiyKey). If an entity knows the authorization data for the key
(key.usageAuth) it can perform all the functions, allowed for that use model of that particular key. This
entity is also defined as delegation creation entity, since it can initiate the delegation process. Assume that a
restricted usage entity should only be allowed to execute a subset or a single functions denoted as
TPM_Example, within the specific use model of a key. (e.g. Allow the usage of a TPM_IDENTITY_KEY only for
Certifying Keys, but no other function). This use model points to the selection of the DSAP as the
authorization protocol to execute the TPM_Example command.

To perform this scenario the delegation creation entity must know the authorization data for the key
(key.usageAut). It then has to initiate the delegation by creating a TPM_DELEGATE_KEY_BLOB via the
TPM_Delegate_CreateBlob command. As a next step the delegation creation entity has to pass the
TPM_DELEGATE_KEY_BLOB and the delegation authorization data (TPM_DELEGATE_SENSITIVE.authValue) to
the restricted usage entity. The specification offers the TPM_DelTable_ReadAuth mechanism to perform this
function. Other mechanisms may be used.

The restricted usage entity can now start an TPM_DSAP session by using the TPM_DELEGATE_KEY_BLOB as
input.

For the TPM_Example command, the inAuth parameter provides the authorization to execute the command.
The following table shows the commands executed, the parameters created and the wire formats of all of the
information.

<inParamDigest> is the result of the following calculation: SHA1(ordinal, inArgOne, inArgTwo).
<outParamDigest> is the result of the following calculation: SHA1(returnCode, ordinal, outArgOne).
inAuthSetupParams refers to the following parameters, in this order: authLastNonceEven, nonceOdd,
continueAuthSession. OutAuthSetupParams refers to the following parameters, in this order: nonceEven,
nonceOdd, continueAuthSession

In addition to the two even nonces generated by the TPM (authLastNonceEven and nonceEven) that are used
for TPM_OIAP, there is a third, labeled nonceEvenOSAP that is used to generate the shared secret. For every
even nonce, there is also an odd nonce generated by the system.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 119 of 150
 TCG PUBLISHED

Caller On the wire Dir TPM

Send TPM_DSAP TPM_DSAP

keyHandle

nonceOddOSAP

entityType

entityValue

 Decrypt sensitiveArea of entityValue

If entityValue==TPM_ET_DEL_BLOB verify the integrity of the blob,
and if a TPM_DELEGATE_KEY_BLOB is input verify that KeyHandle
and entityValue match

Create session & authHangle

Generate authLastNonceEven

Save authLastNonceEven with authHandle

Generate nonceEvenOSAP

Generate sharedSecret = HMAC(sensitiveArea.authValue.,
nonceEvenOSAP, nonceOddOSAP)

Save keyHandle, sharedSecret with authHandle and permissions

Save authHandle, authLastNonceEven

Generate sharedSecret =
HMAC(sensitiveArea.authValue,
nonceEvenOSAP, nonceOddOSAP)

Save sharedSecret

authHandle,
authLastNonceEven

nonceEvenOSAP

 Returns

Generate nonceOdd & save with
authHandle.

Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

Send TPM_Example tag

paramSize

ordinal

inArgOne

inArgTwo

authHandle

nonceOdd

continueAuthSession

inAuth

 Verify authHandle points to a valid session, mismatch returns
TPM_AUTHFAIL

Retrieve authLastNonceEven from internal session storage

HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)

Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL

Check if command ordinal of TPM_Example is allowed in
permissions. If not return TPM_????

Execute TPM_Example and create returnCode

Generate nonceEven to replace authLastNonceEven in session

Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

Save nonceEven

HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)

Compare HM to resAuth. This verifies
returnCode and output parameters.

tag

paramSize

returnCode

outArgOne

nonceEven

continueAuthSession

resAuth

 Return output parameters

If continueAuthSession is FALSE then destroy session

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 120 of 150
 TCG PUBLISHED

Suppose now that the TPM user wishes to send another command using the same session to operate on the
same key. For the purposes of this example, we will assume that the same ordinal is to be used
(TPM_Example). To re-use the previous session, the continueAuthSession output boolean must be TRUE.

The following table shows the command execution, the parameters created and the wire formats of all of the
information.

In this case, authLastNonceEven is the nonceEven value returned by the TPM with the output parameters
from the first execution of TPM_Example.

Caller On the wire Dir TPM

Generate nonceOdd

Compute inAuth = HMAC (sharedSecret,
inParamDigest, inAuthSetupParams)

Save nonceOdd with authHandle

Send TPM_Example tag

paramSize

ordinal

inArgOne

inArgTwo

nonceOdd

continueAuthSession

inAuth

 Retrieve authLastNonceEven from internal session storage

HM = HMAC (sharedSecret, inParamDigest, inAuthSetupParams)

Compare HM to inAuth. If they do not compare return with
TPM_AUTHFAIL

Execute TPM_Example and create returnCode

Generate nonceEven to replace authLastNonceEven in session

Set resAuth = HMAC(sharedSecret, outParamDigest,
outAuthSetupParams)

Save nonceEven

HM = HMAC(sharedSecret,
outParamDigest, outAuthSetupParams)

Compare HM to resAuth. This verifies
returnCode and output parameters.

tag

paramSize

returnCode

outArgOne

nonceEven

continueAuthSession

resAuth

 Return output parameters

If continueAuthSession is FALSE then destroy session

The TPM user could then use the session for further authorization sessions or terminate it in the ways that
have been described above in TPM_OIAP. Note that termination of the DSAP session causes the TPM to destroy
the shared secret.

End of informative comment.

1. The DSAP session on load (TPM_DSAP) MUST check that the PCR registers are in the proper configuration

2. The DSAP session MUST be invalidated when any change occurs to any PCR attached to the session

a. This means that if the pcrInfo structure in the delegation points to a PCR register and the PCR
register has a TPM_PCR_Reset or TPM_Extend executed on it the DSAP session MUST be invalidated

3. When loading a context saved DSAP session the TPM MUST ensure that the PCR registers are in the proper
configuration

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 121 of 150
 TCG PUBLISHED

28. Physical Presence
Start of informative comment:

Physical presence is a signal from the platform to the TPM that indicates the operator manipulated the
hardware of the platform. Manipulation would include depressing a switch, setting a jumper, depressing a key
on the keyboard or some other such action.

TCG does not specify an implementation technique. The guideline is the physical presence technique should
make it difficult or impossible for rogue software to assert the physical presence signal.

A PC-specific physical presence mechanism might be an electrical connection from a switch, or a program
that loads during power on self-test.

End of informative comment.

The TPM MUST support a signal from the platform for the assertion of physical presence. A TCG platform
specific specification MAY specify what mechanisms assert the physical presence signal.

The platform manufacturer MUST provide for the physical presence assertion by some physical mechanism.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 122 of 150
 TCG PUBLISHED

28.1 Use of Physical Presence
Start of informative comment:

For control purposes there are numerous commands on the TPM that require TPM Owner authorization.
Included in this group of commands are those that turn the TPM on or off and those that define the operating
modes of the TPM. The TPM Owner always has complete control of the TPM. What happens in two conditions:
there is no TPM Owner or the TPM Owner forgets the TPM Owner authorization value. Physical presence
allows for an authorization to change the state in these two conditions.

No TPM Owner

This state occurs when the TPM ships from manufacturing (it can occur at other times also). There is no TPM
Owner. It is imperative to protect the TPM from remote software processes that would attempt to gain
control of the TPM. To indicate to the TPM that the TPM operating state can change (allow for the creation of
the TPM Owner) the human asserts physical presence. The physical presence assertion than indicates to the
TPM that changing the operating state of the TPM is authorized.

Lost TPM Owner authorization

In the case of lost, or forgotten, authorization there is a TPM Owner but no way to manage the TPM. If the
TPM will only operate with the TPM Owner authorization then the TPM is no longer controllable. Here the
operator of the machine asserts physical presence and removes the current TPM Owner. The assumption is
that the operator will then immediately take ownership of the TPM and insert a new TPM Owner authorization
value.

Operator disabling

Another use of physical presence is to indicate that the operator wants to disable the use of the TPM. This
allows the operator to temporilary turn off the TPM but not change the permanent operating mode of the
TPM as set by the TPM Owner.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 123 of 150
 TCG PUBLISHED

29. TPM Internal Asymmetric Encryption
Start of Informative Comment:

For asymmetric encryption schemes, the TPM is not required to perform the blocking of information where
that information cannot be encrypted in a single cryptographic operation. The schemes
TPM_ES_RSAESOAEP_SHA1_MGF1 and TPM_ES_RSAESPKCSV15 allow only single block encryption. When using
these schemes, the caller to the TPM must perform any blocking and unblocking outside the TPM. It is the
responsibility of the caller to ensure that multiple blocks are properly protected using a chaining mechanism.

Note that there are inherent dangers associated with splitting information so that it can be encrypted in
multiple blocks with an asymmetric key, and then chaining together these blocks together. For example, if
an integrity check mechanism is not used, an attacker can encrypt his own data using the public key, and
substitute this rogue block for one of the original blocks in the message, thus forcing the TPM to replace part
of the message upon decryption.

There is also a more subtle attack to discover the data encrypted in low-entropy blocks. The attacker makes
a guess at the plaintext data, encrypts it, and substitutes the encrypted guess for the original block. When
the TPM decrypts the complete message, a successful decryption will indicate that his guess was correct.

There are a number of solutions which could be considered for this problem – One such solution for TPMs
supporting symmetric encryption is specified in PKCS#7, section 10, and involves using the public key to
encrypt a symmetric key, then using that symmetric key to encrypt the long message.

For TPMs without symmetric encryption capabilities, an alternative solution may be to add random padding to
each message block, thus increasing the block’s entropy.

End of informative comment

The TPM MUST check that the encryption scheme defined for use with the key is a valid scheme for the key
type, as follows:

Key algorithm Approved schemes Scheme Value

TPM_ALG_RSA TPM_ES_NONE 0x0001

 TPM_ES_RSAESPKCSv15 0x0002

 TPM_ES_RSAESOAEP_SHA1_MGF1 0x0003

TPM_ALG_AES or 3DES TPM_ES_SYM_CNT 0x0004

TPM_ALG_AES or 3DES TPM_ES_SYM_OFB 0x0005

1. For a TPM_UNBIND command where the parent key has pubKey.algorithmId equal to TPM_ALG_RSA and
pubKey.encScheme set to TPM_ES_RSAESPKCSv15 the TPM SHALL NOT expect a PAYLOAD_TYPE structure
to pre-pend the decrypted data.

2. The TPM MUST perform the encryption or decryption in accordance with the specification of the
encryption scheme, as described below.

3. When a null terminated string is included in a calculation, the terminating null SHALL NOT be included in
the calculation.

29.1.1 TPM_ES_RSAESOAEP_SHA1_MGF1
1. The encryption and decryption MUST be performed using the scheme RSA_ES_OAEP defined in [PKCS

#1v2.0: 8.1] using SHA1 as the hash algorithm for the encoding operation.

2. Encryption

a. The OAEP encoding P parameter MUST be the 4 character string “TCPA”.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 124 of 150
 TCG PUBLISHED

b. While the TCG now controls this specification the string value will NOT change to allow for
interoperability and backward compatibility with TCPA 1.1 TPM’s

c. If there is an error with the encryption, the TPM must return the error TPM_ENCRYPT_ERROR.

3. Decryption

a. The OAEP decoding P parameter MUST be the 4 character string “TCPA”.

b. While the TCG now controls this specification the string value will NOT change to allow for
interoperability and backward compatibility with TCPA 1.1 TPM’s

c. If there is an error with the decryption, the TPM must return the error TPM_DECRYPT_ERROR.

29.1.2 TPM_ES_RSAESPKCSV15
1. The encryption MUST be performed using the scheme RSA_ES_PKCSV15 defined in [PKCS #1v2.0: 8.1].

2. Encryption

a. If there is an error with the encryption, return the error TPM_ENCRYPT_ERROR.

3. Decryption

a. If there is an error with the decryption, return the error TPM_DECRYPT_ERROR.

29.1.3 TPM_ES_SYM_CNT
Start of informative comment:

This defines an encryption mode in use with symmetric algorithms. The actual definition is at

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

The underlying symmetric algorithm may be AES128, AES192, AES256 or 3DES. The definition for these
algorithms is in the NIST document Appendix E.

End of informative comment.

1. Given a current counter value, the next counter value is obtained by treating the lower 32 bits of the
current counter value as an unsigned 32-bit integer x, then replacing the lower 32 bits of the current
counter value with the bits of the incremented integer (x + 1) mod 2^32. This method is described in
Appendix B.1 of the NIST document (b=32).30.1.3 TPM_ES_SYM_CNT

29.1.4 TPM_ES_SYM_OFB
Start of informative comment:

This defines an encryption mode in use with symmetric algorithms. The actual definition is at

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

The underlying symmetric algorithm may be AES128, AES192, AES256 or 3DES. The definition for these
algorithms is in the NIST document Appendix E.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 125 of 150
 TCG PUBLISHED

29.2 TPM Internal Digital Signatures
Start of informative comment:

These values indicate the approved schemes in use by the TPM to generate digital signatures.

End of informative comment.

The TPM MUST check that the signature scheme defined for use with the key is a valid scheme for the key
type, as follows:

Key algorithm Approved schemes Scheme Value

TPM_ALG_RSA TPM_SS_NONE 0x0001

 TPM_SS_RSASSAPKCS1v15_SHA1 0x0002

 TPM_SS_RSASSAPKCS1v15_DER 0x0003

 TPM_SS_RSASSAPKCS1v15_INFO 0x0004

The TPM MUST perform the signature or verification in accordance with the specification of the signature
scheme, as described below.

29.2.1 TPM_SS_RSASSAPKCS1v15_SHA1
1. The signature MUST be performed using the scheme RSASSA-PKCS1-v1.5 defined in [PKCS #1v2.0: 8.1]

using SHA1 as the hash algorithm for the encoding operation.

29.2.2 TPM_SS_RSASSAPKCS1v15_DER
Start of informative comment:

This signature scheme is designed to permit inclusion of DER coded information before signing, which is
inappropriate for most TPM capabilities

End of informative comment.

1. The signature MUST be performed using the scheme RSASSA-PKCS1-v1.5 defined in [PKCS #1v2.0: 8.1].
The caller must properly format the area to sign using the DER rules. The provided area maximum size is
k-11 octets.

2. TPM_Sign SHALL be the only TPM capability that is permitted to use this signature scheme. If a capability
other than TPM_Sign is requested to use this signature scheme, it SHALL fail with the error code
TPM_INAPPROPRIATE_SIG

29.2.3 TPM_SS_RSASSAPKCS1v15_INFO
Start of informative comment:

This signature scheme is designed to permit signatures on arbitrary information but also protect the signature
mechanism from being misused.

End of informative comment.

1. The scheme MUST work just as TPM_SS_RSASSAPKCS1V15_SHA1 except in the TPM_Sign command

2. In the TPM_Sign command the scheme MUST use a properly constructed TPM_SIGN_INFO structure

3. For the following commands the TPM MUST perform

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 126 of 150
 TCG PUBLISHED

29.2.4 Use of Signature Schemes
Start of informative comment:

The PKCS1v15_INFO scheme is a new addition for 1.2. It causes a new functioning for 1.1 and 1.2 keys. The
following details the use of the new scheme

End of informative comment.

1. For the commands (TPM_GetAuditDigestSigned, TPM_TickStampBlob, TPM_ReleaseTransportSigned):

a. The TPM MUST create a TPM_SIGN_INFO and sign it using the key specified and
TPM_SS_RSASSAPKCS1v15_SHA1

2. For the commands (TPM_IdentityKey, TPM_Quote and TPM_CertifyKey):

a. Create the structure as defined by the command and sign using TPM_SS_RSASSAPKCS1v15_SHA1 for
either SHA1 or SIGN_INFO

3. For TPM_Sign:

a. Create the structure as defined by the command and key scheme

b. If key->sigScheme is SHA1 sign the 20 byte parameter

c. If key->sigScheme is DER, sign the DER value using TPM_SS_RSASSAPKCS1v15_DER

d. If key->sigScheme is SIGN_INFO, sign any value using the SIGN_INFO structure and
TPM_SS_RSASSAPKCS1v15_INFO

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 127 of 150
 TCG PUBLISHED

30. Key Usage Table
This table summarizes the types of keys associated with a given TPM command.

 First Key Second Key

Se
cti

on

Na
me

Fir
st

Ke
y

Se
co

nd
 K

ey

SI
GN

IN
G

ST
OR

AG
E

ID
EN

TI
TY

AU
TH

CH
G

BI
ND

LE
EG

AC
Y

SI
GN

IN
G

ST
OR

AG
E

ID
EN

TI
TY

AU
TH

CH
G

BI
ND

LE
GA

CY

 TPM_ChangeAuth parent blob x x x x x x

 TPM_OSAP entity x x x x x x

 TPM_ChangeAuthAsymStart idKey ephemeral x x

 TPM_ChangeAuthAsymFinish parent ephemeral x x

 TPM_Quote key x x x

 TPM_Seal key x

 TPM_Unseal parent x

 TPM_UnBind key x x

 TPM_CreateWrapKey parent x

 TPM_LoadKey parent inKey x x x x x x

 TPM_GetPubKey key x x x x x x

 TPM_CreateMigrationBlob parent blob x x x x x

 TPM_ConvertMigrationBlob parent x

 TPM_CertifyKey certKey inKey x x x x x x x x

 TPM_Sign key x x

 TPM_CertifySelfTest key x x x

 TPM_GetCapabilitySigned key x x x

 TPM_ActivateIdentity idKey x

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 128 of 150
 TCG PUBLISHED

31. Direct Anonymous Attestation
Start of informative comment:

DAA_Join and DAA_Sign are highly resource intensive commands. They require most of the internal TPM
resources to accomplish the complete set of operations. A TPM may specify that no other commands are
possible during the join or sign operations. To allow for other operations to occur the TPM does allow the
TPM_SaveContext command to save off the current join or sign operation.

Operations that occur during a join or sign result in the loss of the join or sign session in favour of the
interrupting command.

End of informative comment.

1. The TPM MUST support one concurrent TPM_Join or TPM_SIgn session. The TPM MAY support additional
sessions

2. The TPM MAY invalidate a join or sign session upon the receipt of any additional command other than the
join/sign or TPM_SaveContext

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 129 of 150
 TCG PUBLISHED

31.1 TPM_DAA_JOIN
Start of informative comment:

TPM_DAA_Join creates new JOIN data. If a TPM supports only one JOIN/SIGN operation, TPM_DAA_Join
invalidates any previous DAA attestation information inside a TPM. The JOIN phase of a DAA context requires
a TPM to communicate with an issuer. TPM_DAA_Join outputs data to be sent to an issuing authority and
receives data from that issuing authority. The operation potentially requires several seconds to complete, but
is done in a series of atomic stages and TPM_SaveContext/RestoreContext can be used to cache data off-TPM
inbetween atomic stages.

The JOIN process is designed so a TPM will normally receive exactly the same DAA credentials from a given
issuer, no matter how many times the JOIN process is executed and no matter whether the issuer changes his
keys. This property is necessary because an issuer must give DAA credentials to a platform after verifying that
the platform has the architecture of a trusted platform. Unless the issuer repeats the verification process,
there is no justification for giving different DAA credentials to the same platform. Even after repeating the
verification process, the issuer should give replacement (different) DAA credentials only when it is necessary
to retire the old DAA credentials. Replacement DAA credentials erase the previous DAA history of the
platform, at least as far as the DAA credentials from that issuer are concerned. Replacement might be
desirable, as when a platform changes hands, for example, in order to eliminate any association via DAA
between the seller and the buyer. On the other hand, replacement might be undesirable, since it enables a
rogue to rejoin a community from which he has been barred. Replacement is done by submitting a different
“count” value to the TPM during a JOIN process. A platform may use any value of “count” at any time, in any
order, but only “counts” accepted by the issuer will elicit DAA credentials from that issuer.

The TPM is forced to verify an issuer’s public parameters before using an issuer’s public parameters. This
verification provides proof that the public parameters (which include a public key) were approved by an
entity that knows the private key corresponding to that public key; in other words that the JOIN has
previously been approved by the issuer. This verification is necessary to prevent an attack by a rogue using a
genuine issuer’s public parameters, which could reveal the secret created by the TPM using those public
parameters. Verification uses a signature (provided by the issuer) over the public parameters.

The exponent of the issuer’s key is fixed at 2^16+1, because this is the only size of exponent that a TPM is
required to support. The modulus of the issuer’s public key is used to create the pseudonym with which the
TPM contacts the issuer. Hence the TPM cannot produce the same pseudonym for different issuers (who have
different keys). The pseudonym is always created using the issuer’s first key, even if the issuer changes keys,
in order to produce the property described earlier. The issuer proves to the TPM that he has the right to use
that first key to create a pseudonym by creating a chain of signatures from the first key to the current key,
and submitting those signatures to the TPM. The method has the desirable property that only signatures and
the most recent private key need be retained by the issuer: once the latest link in the signature chain has
been created, previous private keys can be discarded.

The use of atomic operations minimises the contiguous time that a TPM is busy with TPM_DAA_Join and hence
unavailable for other commands. JOIN can therefore be done as a background activity without
inconveniencing a user. The use of atomic operations also minimises the peak value of TPM resources
consumed by the JOIN phase.

The use of atomic operations introduces a need for consistency checks, to ensure that the same parameters
are used in all atomic operations of the same JOIN process. DAA_tpmSpecific therefore contains a digest of
the associated DAA_issuerSettings structure, and DAA_session contains a digest of associated DAA_tpmSpecific
and DAA_joinSession structures. Each atomic operation verifies digests to ensure use of mutually consistent
sets of DAA_issuerSettings, DAA_tpmSpecific, DAA_session, and DAA_joinSession data.

JOIN operations and data structures are designed to minimise the amount of data that must be stored on a
TPM inbetween atomic operations, while ensuring use of mutually consistent sets of data. Digests of public
data are held in the TPM between atomic operations, instead of the actual public data (if a digest is smaller
than the actual data). In each atomic operation, consistency checks verify that any public data loaded and

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 130 of 150
 TCG PUBLISHED

used in that operation matches the stored digest. Thus non-secret DAA_generic_X parameters (loaded into
the TPM only when required), are checked using digests DAA_digest_X (preloaded into the TPM in the
structure DAA_issuerSettings).

JOIN includes a challenge from the issuer, in order to defeat simple Denial of Service attacks on the issuer’s
server by rogues pretending to be arbitrary TPMs.

A first group of atomic operations generate all TPM-data that must be sent to the issuer. The platform
performs other operations (that do not need to be trusted) using the TPM-data, and sends the resultant data
to the issuer. The issuer sends values u2 and u3 back to the TPM. A second group of atomic operations
accepts this data from the issuer and completes the protocol.

The TPM outputs encrypted forms of DAA_tpmSpecific, v0 and v1. These encrypted data are later interpreted
by the same TPM and not by any other entity, so any manufacturer-specific wrapping can be used. It is
suggested, however, that enc(DAA_tpmSpecific) or enc(v0) or enc(v1) data should be created by adapting a
TPM_CONTEXT_BLOB structure.

After executing TPM_DAA_join, it is prudent to perform TPM_DAA_sign, to verify that the JOIN process
completed correctly. A host platform may choose to verify JOIN by performing TPM_DAA_sign as both the
target and the verifier (or could, of course, use an external verifier).

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 131 of 150
 TCG PUBLISHED

31.2 TPM_DAA_Sign
Start of informative comment:

TPM_DAA_Sign responds to a challenge and proves the attestation held by a TPM without revealing the
attestation held by that TPM. The operation is done in a series of atomic stages to minimise the contiguous
time that a TPM is busy and hence unavailable for other commands. TPM_SaveContext can be used to save a
DAA context inbetween atomic stages. This enables the response to the challenge to be done as a background
activity without inconveniencing a user, and also minimises the peak value of TPM resources consumed by the
process.

The use of atomic operations introduces a need for consistency checks, to ensure that the same parameters
are used in all atomic operations of the same SIGN process. DAA_tpmSpecific therefore contains a digest of
the associated DAA_issuerSettings structure, and DAA_session contains a digest of associated DAA_tpmSpecific
structure. Each atomic operation verifies these digests and hence ensures use of mutually consistent sets of
DAA_issuerSettings, DAA_tpmSpecific, and DAA_session data.

SIGN operations and data structures are designed to minimise the amount of data that must be stored on a
TPM inbetween atomic operations, while ensuring use of mutually consistent sets of data. Digests of public
and private data are held in the TPM between atomic operations, instead of the actual public or private data
(if a digest is smaller than the actual data). At each atomic operation, consistency checks verify that any data
loaded and used in that operation matches the stored digest. Thus parameters DAA_digest_X are digests
(preloaded into the TPM in the structure DAA_issuerSettings) of non-secret DAA_generic_X parameters
(loaded into the TPM only when required), for example.

The design enables the use of any number of issuer DAA-data, private DAA-data, and so on. Strictly, the
design is that the *TPM* puts no limit on the number of sets of issuer DAA-data or sets of private DAA-data, or
restricts what set is in the TPM at any time, but supports only one DAA-context in the TPM at any instant. Any
number of DAA-contexts can, of course, be swapped in and out of the TPM using saveContext /loadContext,
so applications do not perceive a limit on the number of DAA-contexts.

TPM_DAA_Sign accepts a freshness challenge from the verifier and generate all TPM-data that must be sent to
the verifier. The platform performs other operations (that do not need to be trusted) using the TPM-data, and
sends the resultant data to the verifier. At one stage, the TPM incorporates a loaded public (non-migratable)
key into the protocol. This is intended to permit the setup of a session, for any specific purpose, including
doing the same job in TPM_ActivateIdentity as the EK.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 132 of 150
 TCG PUBLISHED

31.3 DAA Command summary
Start of informative comment:

The following is a conceptual summary of the operations that are necessary to setup a TPM for DAA, execute
the JOIN process, and execute the SIGN process.

The summary is partitioned according to the “stages” of the actual TPM commands. Thus the operations
listed in JOIN under stage-2 briefly describe the operation of TPM_DAA_join at stage-2, for example.

This summary is in place to help in the connection between the mathematical definition of DAA and this
implementation in a TPM.

End of informative comment.

31.3.1 TPM setup
1. A TPM generates a TPM-specific secret S (160-bit) from the RNG and stores S in nonvolatile store on the

TPM. This value will never be disclosed and changed by the TPM.

31.3.2 JOIN
1. When the following is performed, this process does not increment the stage counter.

a. TPM imports a non-secret values n0 (2048-bit).

b. TPM computes a non-secret value N0 (160-bit) = H(n0).

c. TPM computes a TPM-specific secret DAA_rekey (160-bit) = H(S, H(n0)).

d. TPM stores a self-consistent set of (N0, DAA_rekey)

2. The following is performed 0 or several times: (Note: If the stage mechanism is being used, then this
branch does not increment the stage counter.)

a. TPM imports

i. a self consistent set of (N0, DAA_rekey)

ii. a non-secret value DAA_SEED_KEY (2048-bit)

iii. a non-secret value DEPENDENT_SEED_KEY (2048-bit)

iv. a non-secret value SIG_DSK (2048-bit)

b. TPM computes DIGEST (160-bit) = H(DAA_SEED_KEY)

c. If DIGEST != N0, TPM refuses to continue

d. If DIGEST == N0, TPM verifies validity of signature SIG_DSK on DEPENDENT_SEED_KEY with key
(DAA_SEED_KEY, e0 (= 2^16 + 1)) by using TPM_Sign_Verify (based on PKCS#1 2.0). If check fails, TPM
refuses to continue.

e. TPM sets N0 = H(DEPENDENT_SEED_KEY)

f. TPM stores a self consistent set of (N0, DAA_JOIN)

3. Stage 2

a. TPM imports a set of values, including

i. a non-secret value n0 (2048-bit),

ii. a non-secret value R0 (2048-bit),

iii. a non-secret value R1 (2048-bit),

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 133 of 150
 TCG PUBLISHED

iv. a non-secret value S0 (2048-bit),

v. a non-secret value S1 (2048-bit),

vi. a non-secret value n (2048-bit),

vii. a non-secret value n1 (1024-bit),

viii. a non-secret value gamma (2048-bit),

ix. a non-secret value q (208-bit),

x. a non-secret value COUNT (8-bit),

xi. a self consistent set of (N0, DAA_rekey).

xii. TPM saves them as part of a new set A.

b. TPM computes DIGEST (160-bit) = H(n0)

c. If DIGEST != N0, TPM refuses to continue.

d. If DIGEST == N0, TPM computes DIGEST (160-bit) = H(R0, R1, S0, S1, n, n1, Γ, q)

e. TPM imports a non-secret value SIG_ISSUER_KEY (2048-bit).

f. TPM verifies validity of signature SIG_ISSUER_KEY (2048-bit) on DIGEST with key (n0, e0) by using
TPM_Sign_Verify (based on PKCS#1 2.0). If check fails, TPM refuses to continue.

g. TPM computes a TPM-specific secret f (208-bit) = H(DAA_rekey, COUNT, 0)||H(DAA_rekey, COUNT, 1)
mod q.

h. TPM computes a TPM-specific secret f0 (104-bit) = f mod 2104.

i. TPM computes a TPM-specific secret f1 (104-bit) = f >> 104.

j. TPM save f, f0 and f1 as part of set A.

4. Stage 3

a. TPM generates a TPM-specific secret u0 (1024-bit) from the RNG.

b. TPM generates a TPM-specific secret u'1 (1104-bit) from the RNG.

c. TPM computes u1 (1024-bit) = u'1 mod n1.

d. TPM stores u0 and u1 as part of set A.

5. Stage 4

a. TPM computes a non-secret value P1 (2048-bit) = (R0^f0) mod n and stores P1 as part of set A.

6. Stage 5

a. TPM computes a non-secret value P2 (2048-bit) = P1*(R1^f1) mod n, stores P2 as part of set A and
erases P1 from set A.

7. Stage 6

a. TPM computes a non-secret value P3 (2048-bit) = P2*(S0^u0) mod n, stores P3 as part of set A and
erases P2 from set A.

8. Stage 7

a. TPM computes a non-secret value U (2048-bit) = P3*(S1^u1) mod n.

b. TPM erases P3 from set A

c. TPM computes and saves U1 (160-bit) = H(U||COUNT||N0) as part of set A.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 134 of 150
 TCG PUBLISHED

d. TPM exports U.

9. Stage 8

a. TPM imports ENC_NE (2048-bit).

b. TPM decrypts NE (160-bit) from ENC_NE (2048-bit) by using privEK: NE = decrypt(privEK, ENC_NE).

c. TPM computes U2 (160-bit) = H(U1||NE).

d. TPM erases U1 from set A.

e. TPM exports U2.

10. Stage 9

a. TPM generates a TPM-specific secret r0 (344-bit) from the RNG.

b. TPM generates a TPM-specific secret r1 (344-bit) from the RNG.

c. TPM generates a TPM-specific secret r2 (1024-bit) from the RNG.

d. TPM generates a TPM-specific secret r3 (1264-bit) from the RNG.

e. TPM stores r0, r1, r2, r3 as part of set A.

f. TPM computes a non-secret value P1 (2048-bit) = (R0^r0) mod n and stores P1 as part of set A.

11. Stage 10

a. TPM computes a non-secret value P2 (2048-bit) = P1*(R1^r1) mod n, stores P2 as part of set A and
erases P1 from set A.

12. Stage 11

a. TPM computes a non-secret value P3 (2048-bit) = P2*(S0^r2) mod n, stores P3 as part of set A and
erases P2 from set A.

13. Stage 12

a. TPM computes a non-secret value P4 (2048-bit) = P3*(S1^r3) mod n, stores P4 as part of set A and
erases P3 from set A.

b. TPM exports P4.

14. Stage 13

a. TPM imports w (2048-bit).

b. TPM computes w1 = w^q mod Γ.

c. TPM verifies if w1 = 1 holds. If it doesn’t hold, TPM refuses to continue.

d. If it does hold, TPM saves w as part of set A.

15. Stage 14

a. TPM computes a non-secret value E (2048-bit) = w^f mod Γ.

b. TPM exports E.

16. Stage 15

a. TPM computes a TPM-specific secret r (208-bit) = r0 + 2^104*r1 mod q.

b. TPM computes a non-secret value E1 (2048-bit) = w^r mod Γ.

c. TPM exports E1 and erases w from set A.

17. Stage 16

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 135 of 150
 TCG PUBLISHED

a. TPM imports a non-secret value c1 (160-bit).

b. TPM generates a non-secret value NT (160-bit) from the RNG.

c. TPM computes a non-secret value c (160-bit) = H(c1||NT).

d. TPM save c as part of set A.

e. TPM exports NT

18. Stage 17

a. TPM computes a non-secret value s0 (352-bit) = r0 + c*f0 over the integers.

b. TPM exports s0.

19. Stage 18

a. TPM computes a non-secret value s1 (352-bit) = r1 + c*f1 over the integers.

b. TPM exports s1.

20. Stage 19

a. TPM computes a non-secret value s2 (1024-bit) = r2 + c*u0 mod 21024.

b. TPM exports s2.

21. Stage 20

a. TPM computes a non-secret value s'2 (1024-bit) = (r2 + c*u0) >> 1024 over the integers.

b. TPM saves s'2 as part of set A.

c. TPM exports c

22. Stage 21

a. TPM computes a non-secret value s3 (1272-bit) = r3 + cu1 + s'2 over the integers.

b. TPM exports s3 and erases s'2 from set A.

23. Stage 22

a. TPM imports a non-secret value u2 (1024-bit).

b. TPM computes a TPM-specific secret v0 (1024-bit) = u2 + u0 mod 21024.

c. TPM stores v0 as part of A.

d. TPM computes a TPM-specific secret v'0 (1024-bit) = (u2 + u0) >> 1024 over the integers.

e. TPM saves v'0 as part of set A.

24. Stage 23

a. TPM imports a non-secret value u3 (1512-bit).

b. TPM computes a TPM-specific secret v1 (1520-bit) = u3 + u1 + v'0 over the integers.

c. TPM stores v1 as part of A.

d. TPM erases v'0 from set A.

25. Stage 24

a. TPM makes self consistent set of all the data (n0, COUNT, R0, R1, S0, S1, n, Γ, q, v0, v1), where the
values v0, v1 are secret – they need to be stored safely with the consistent set, and the remaining is
non-secret.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 136 of 150
 TCG PUBLISHED

b. TPM erases set A.

31.3.3 SIGN
1. Stage 0 & 1

a. TPM imports and verifies a self consistent set of all the data including:

i. n0 (2048-bit),

ii. COUNT (8-bit),

iii. R0 (2048-bit),

iv. R1 (2048-bit),

v. S0 (2048-bit),

vi. S1 (2048-bit),

vii. n (2048-bit),

viii. gamma (2048-bit),

ix. q (208-bit),

x. v0 (1024-bit),

xi. v1 (1520-bit).

xii. If the verification does not succeed, TPM refuses to continue.

b. TPM stores the above values as part of a new set A.

c. TPM computes a TPM-specific secret f0 (104-bit) = f mod 2104.

d. TPM computes a TPM-specific secret f1 (104-bit) = f >> 104.

e. TPM stores f0 and f1 as part of set A.

f. TPM generates a TPM-specific secret r0 (344-bit) from the RNG.

g. TPM generates a TPM-specific secret r1 (344-bit) from the RNG.

h. TPM generates a TPM-specific secret r2 (1024-bit) from the RNG.

i. TPM generates a TPM-specific secret r4 (1752-bit) from the RNG.

j. TPM stores r0, r1, r2, r4, as part of set A.

2. Stage 2

a. TPM computes a non-secret value P1 (2048-bit) = (R0^r0) mod n and stores P1 as part of set A.

3. Stage 3

a. TPM computes a non-secret value P2 (2048-bit) = P1*(R1^r1) mod n, stores P2 as part of set A and
erases P1 from set A.

4. Stage 4

a. TPM computes a non-secret value P3 (2048-bit) = P2*(S0^r2) mod n, stores P3 as part of set A and
erases P2 from set A.

5. Stage 5

a. TPM computes a non-secret value T (2048-bit) = P3*(S1^r4) mod n.

b. TPM erases P3 from set A.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 137 of 150
 TCG PUBLISHED

c. TPM exports T.

6. Stage 6

a. TPM imports a non-secret value w (2048-bit).

b. TPM computes w1 = w^q mod Γ.

c. TPM verifies if w1 = 1 holds. If it doesn’t hold, TPM refuses to continue.

d. If it does hold, TPM saves w as part of set A.

7. Stage 7

a. TPM computes a non-secret value E (2048-bit) = w^f mod Γ.

b. TPM exports E and erases f from set A.

8. Stage 8

a. TPM computes a TPM-specific secret r (208-bit) = r0 + 2^104*r1 mod q.

b. TPM computes a non-secret value E1 (2048-bit) = w^r mod Γ.

c. TPM exports E1 and erases w and E1 from set A.

9. Stage 9

a. TPM imports a non-secret value c1 (160-bit).

b. TPM generates a non-secret value NT (160-bit) from the RNG.

c. TPM computes a non-secret value c2 (160-bit) = H(c1||NT) and erases c1 from set A.

d. TPM saves c2 as part of set A.

e. TPM exports NT.

10. Stage 10

a. TPM imports a non-secret value b (1-bit).

b. If b = = 1, TPM imports a non-secret value m (160-bit).

c. TPM computes a non-secret value c (160-bit) = H(c2||b||m) and erases c2 from set A.

d. If b = = 0, TPM imports an RSA public key, eAIK (= 2^16 + 1) and nAIK (2048-bit).

e. TPM computes a non-secret value c (160-bit) = H(c2||b||nAIK) and erases c2 from set A.

f. TPM exports c.

11. Stage 11

a. TPM computes a non-secret value s0 (352-bit) = r0 + c*f0 over the integers.

b. TPM exports s0.

12. Stage 12

a. TPM computes a non-secret value s1 (352-bit) = r1 + c*f1 over the integers.

b. TPM exports s1.

13. Stage 13

a. TPM computes a non-secret value s2 (1024-bit) = r2 + c*v0 mod 21024.

b. TPM exports s2.

14. Stage 14

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 138 of 150
 TCG PUBLISHED

a. TPM computes a non-secret value s'2 (1024-bit) = (r2 + c*v0) >> 1024 over the integers.

b. TPM saves s'2 as part of set A.

15. Stage 15

a. TPM computes a non-secret value s3 (1760-bit) = r4 + cv1 + s'2 over the integers.

b. TPM exports s3 and erases s'2 from set A.

c. TPM erases set A.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 139 of 150
 TCG PUBLISHED

32. General Purpose IO
Start of informative comment:

The GPIO capability allows platform software to send and receive data from general-purpose IO pins on the
TPM device.

The GPIO capability is an optional feature of the TPM. A platform specific specification can make the feature
mandatory. The platform specific specification will indicate the physical nature of the GPIO capability.

Use cases for the GPIO capability are:

• Secure/Access Controlled transparent communication (arbitrary data) between the Host and a platform
peripheral via the TPM; this is the sending and/or receiving of transparent blocks of data with a maximum
block size determined by the TPM’s IO buffer size reduced by GPIO overhead.

• Secure status indication via the TPM. This is transparent control of a logical flag that controls a physical
pin.

• Output transmission of TPM-specific objects, generated inside the TPM, to a platform peripheral upon
request from the host.

The minimum support required in the TPM is for a single bit transmission. A platform specific specification
can require additional types of transmission channels the TPM must support.

For example, the TPM_GPIO_AuthChannel, TPM_GPIO_ReadWrite, and TPM_SetRedirection command input
parameters, and their associated data structures, provide a uniform interface for transfer of data along both
structured buses (such as SMBus, RS232, RS422, or SPI) and unstructured indicators (pins). Since a TPM
supports from 1 to 32 GPIO pins, a TPM may offer more than one structured bus and/or unstructured indicator
data transfer path; in this specification, each separate data transfer path offered by a TPM is called a
“channel.”

The TPM reports the number of channels it supports in response to a GetCapability command. The channel
characteristics are set in the platform specific specification. The goal of the main specification is to allow a
definition of the channel that removes ambiguity but still requires the platform specific specification to
complete the definition.

Software configures a logical bus using the TPM_GPIO_CHANNEL structure as an input parameter to a
TPM_GPIO_AuthChannel command for that logical bus. The fields in the TPM_GPIO_CHANNEL structure enable
software to “configure” an unstructured indicator channel as: (a) read-only, write-only, or read/write; (b)
whether or not reading and/or writing the channel requires proof of physical presence; (c) whether or not
reading and/or writing the channel requires knowledge of an authorization value. A structured bus channel
can be configured in these ways, plus others described below, which include the target address on the bus,
PCR values, and Locality.

Thus, the GPIO capability enables the TPM owner to selectively permit different uses of the same channel and
to isolate different uses in several different ways:

(a) By using authorization secrets

(b) By connecting specific uses of a channel to PCR or Locality values

(c) By using different addresses on structured bus channels. For example, reads and writes to a particular
address on a structured bus might require a particular authorization secret, while reads and writes to a
different address on that structured bus would require a different authorization secret. This example
combines (c) and (a).

(d) By using the different data transfer modes of read-only, write-only, and read-write. So, for example, an
LED indicator might “be configured” to be read by software running at any Locality, but “configured” to be
written only by hardware running at Locality 4.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 140 of 150
 TCG PUBLISHED

(e) By connecting the output of a redirected key, any key or a specific key, to a specific channel through the
use of the TPM_Unbind and TPM_Unseal commands

End of informative comment.

1. The TPM MAY support the TPM_GPIO capability (both the TPM_GPIO_AuthChannel and
TPM_GPIO_ReadWrite commands)

a. The platform specific specification MUST indicate the support for TPM_GPIO and which busses the
TPM MUST support.

2. The TPM MAY support unstructured indicator (bit based) GPIO communication

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 141 of 150
 TCG PUBLISHED

33. Redirection
 Informative comment

Redirection allows the TPM to output the results of operations to hardware other than the normal TPM
communication bus. The redirection can occur to areas internal or external to the TPM. Redirection is only
available to key operations (such as TPM_Unbind, TPM_Unseal, and TPM_GetPubKey). To use redirection the
key must be created specifying redirection as one of the keys attributes.

When redirecting the output the TPM will not interpret any of the data and will pass the data on without any
modifications.

The TPM_SetRedirection command connects a destination location or port to a loaded key. This connection
remains so long as the key is loaded, and is saved along with other key information on a saveContext(key),
loadContext(key). If the key is reloaded using TPM_LoadKey, then TPM_SetRedirection must be run again.

Any use of TPM_SetRedirection with a key that does not have the redirect attribute must return an error. Use
of key that has the redirect attribute without TPM_SetRedirection being set must return an error.

Redirection can use the GPIO channels to send the data to entities that connect to the TPM using the GPIO
pins. When the GPIO channel requires authorization the connection of the channel to a key must be
authorized, further use of the channel does not require additional channel authorization. Normal
authorization to perform the operation is still a requirement.

End of informative comments

1. The TPM MAY support redirection

2. If supported, the TPM MUST only use redirection on keys that have the redirect attribute set

3. The TPM MUST allow the connection of redirection to GPIO channels

4. A key that is tagged as a “redirect” key MUST be a leaf key in the TPM Protected Storage blob hierarchy.
A key that is tagged as a “redirect” key CAN NEVER be a parent key.

5. Output data that is the result of a cryptographic operation using the private portion of a “redirect” key:

a. MUST be passed to an alternate output channel

b. MUST NOT be passed to the normal output channel

c. MUST NOT be interpreted by the TPM

6. When command input or output is redirected the TPM MUST respond to the command as soon as the
ordinal finishes processing

a. The TPM MUST indicate to any subsequent commands that the TPM is busy and unable to accept
additional command until the redirection is complete

b. The TPM MUST allow for the resetting of the redirection channel

7. Redirection MUST be available for the following commands:

a. TPM_Unseal

b. TPM_Unbind

c. TPM_GetPubKey

d. TPM_Seal

e. TPM_Quote

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 142 of 150
 TCG PUBLISHED

33.1 Actions to connect redirection to a GPIO channel
Informative comment

The following actions are in use when a key has redirection set and the TPM_SetRedirection command has
connected the key to a GPIO channel

End of informative comments

Actions

1. If the GPIO direction is TPM_GPIO_ATTR_READ then

a. The result of the channel read will be to fill in the inData parameter

i. No other parameters are supplied

b. Perform an IO read using the specified channel.

i. Handle the address information for the bus. The bus could provide no address information or
several bytes of addressing. The TPM MUST strip this address information

(1) For SMBus, byte 0 is the slave address byte and byte 1 is the command byte

ii. The size of the input area MUST be set by the command failure to receive the correct number of
bytes (either more or less) results in TPM_IO_ERROR

c. Continue processing the command, including performing the parameter validation using the newly
received data

2. If the GPIO direction is TPM_GPIO_ATTR_WRITE then

a. The result of the channel write will be to send the outData to the channel

i. The TPM MUST calculate the output HMAC with the data before any addressing information is
included

ii. Add any addressing information necessary when using the GPIO channel

iii. Send the outData using the GPIO channel

iv. The TPM MUST respond to the calling command

3. If the GPIO direction is TPM_GPIO_ATTR_READWRITE

a. The TPM MUST perform the actions of TPM_GPIO_ATTR_READ and TPM_GPIO_ATTR_WRITE

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 143 of 150
 TCG PUBLISHED

34. Structure Versioning
Start of informative comment:

In version 1.1 some structures also contained a version indicator. The TPM set the indicator to indicate the
version of the TPM that was creating the structure. This was incorrect behavior. The functionality of
determining the version of a structure is radically different in 1.2.

Most structures will contain a TPM_STRUCTURE_TAG. All future structures must contain the tag, the only
structures that do not contain the tag are 1.1 structures that are not modified in 1.2. This restriction keeps
backwards compatibility with 1.1.

Any 1.2 structure must not contain a 1.1 tagged structure. For instance the TPM_KEY complex, if set at 1.2,
must not contain a PCR_INFO structure. The TPM_KEY 1.2 structure must contain a PCR_INFO_LONG
structure. The converse is also true 1.1 structures must not contain any 1.2 structures.

The TPM must not allow the creation of any mixed structures. This implies that a command that deals with
keys, for instance, must ensure that a complete 1.1 or 1.2 structure is properly built and validated on the
creation and use of the key.

The tag structure is set as a UINT16. This allows for a reasonable number of structures without wasting space
in the buffers.

To obtain the current TPM version the caller must use the GetCapability command.

The tag is not a complete validation of the validity of a structure. The tag provides a reference for the
structure and the TPM or caller is responsible for determining the validity of any remaining fields. For
instance, in the TPM_KEY structure the tag would indicate TPM_KEY but the TPM would still use tpmProof and
the various digests to ensure the structure integrity.

End of informative comment.

1. The TPM MUST support 1.1 and 1.2 defined structures

2. The TPM MUST ensure that 1.1 and 1.2 structures are not mixed in the same overall structure

a. For instance in the TPM_KEY structure if the structure is 1.1 then PCR_INFO MUST be set and if 1.2
the PCR_INFO_LONG structure must be set

3. On input the TPM MUST ignore the lower two bytes of the version structure

4. On output the TPM MUST set the lower two bytes to 0 of the version structure

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 144 of 150
 TCG PUBLISHED

35. Certified Migration Key Type
Start of informative comment:

In version 1.1 there were two key types, non-migration and migration keys. The TPM would only certify non-
migrating keys. There is a need for a key that allows migration but allows for certification. This proposal is to
create a key that allows for migration but still has properties that the TPM can certify.

These new keys are “certifiable migratable keys” or CMK. This designation is to separate the keys from either
the normal migration or non-migration types of keys. The TPM Owner is not required to use these keys.

Two entities may participate in the CMK process. The first is the Migration-Selection Authority and the second
is the Migration Authority (MA).

Migration Selection Authority (MSA)

The MSA controls the migration of the key but does not handle the migrated itself.

Migration Authority (MA)

A Migration Authority actually handles the migrated key.

Use of MSA and MA

Migration of a CMK occurs using TPM_CMK_CreateBlob (TPM_CreateMigrationBlob cannot be used). The TPM
Owner authorizes the migration destination (as usual), and the key owner authorizes the migration
transformation (as usual). An MSA authorizes the migration destination as well. If the MSA is the migration
destination, no MSA authorization is required.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 145 of 150
 TCG PUBLISHED

35.1 Certified Migration Requirements
Start of informative comment:

The following list details the design requirements for the controlled migration keys

Key Protections

The key must be protected by hardware and an entity trusted by the key user.

Key Certification

The TPM must provide a mechanism to provide certification of the key protections (both hardware and
trusted entity)

Owner Control

The TPM Owner must control the selection of the trusted entity

Control Delegation

The TPM Owner may delegate the ability to create the keys but the decision must be explicit

Linkage

The architecture must not require linking the trusted entity and the key user

Key Type

The key may be any type of migratable key (storage or signing)

Interaction

There must be no required interaction between the trusted entity and the TPM during the key creation
process

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 146 of 150
 TCG PUBLISHED

35.2 Key Creation
Start of informative comment:

The command TPM_CMK_CreateKey creates a CMK where control of the migration is by a MSA or MA. The
process uses the MSA public key (actually a digest of the MA public key) as input to TPM_CMK_CreateKey. The
key creation process establishes a migrationAuth that is SHA-1(tpmProof || SHA-1(MA pubkey) || SHA-
1(source pubkey)).

The use of tpmProof is essential to prove that CMK creation occurs on a TPM. The use of “source pubkey”
explicitly links a migration authorization value to a particular public key, to simplify verification that a
specific key is being migrated.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 147 of 150
 TCG PUBLISHED

35.3 Migrate CMK to a MA
Start of informative comment:

Migration of a CMK to a destination other than the MSA:

TPM_MIGRATIONKEYAUTH Creation

The TPM Owner authorizes the creation of a TPM_MIGRATIONKEYAUTH structure using
TPM_AuthorizeMigrationKey command. The structure contains the destination migrationKey, the
migrationScheme (which must be set to TPM_MS_RESTRICT_APPROVE or
TPM_MS_RESTRICT_APPROVE_DOUBLE) and a digest of tpmProof.

MA Approval

The MA signs a TPM_CMK_AUTH structure, which contains the digest of the MA public key, the digest of the
destination (or parent) public key and a digest of the public portion of the key to be migrated

TPM Owner Authorization

The TPM Owner authorizes the MA approval using TPM_CMK_CreateTicket and produces a signature ticket

Key Owner Authorization

The CMK owner passes the TPM Owner MA authorization, the MSA Approval and the signature ticket to the
TPM_CMK_CreateBlob using the key owners authorization.

Thus the TPM owner, the key’s owner, and the MSA, all cooperate to migrate a key produced by
TPM_CMK_CreateBlob.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 148 of 150
 TCG PUBLISHED

35.4 Migrate CMK to a MSA
Start of informative comment:

Migrate CMK directly to a MSA

TPM_MIGRATIONKEYAUTH Creation

The TPM Owner authorizes the creation of a TPM_MIGRATIONKEYAUTH structure using
TPM_AuthorizeMigrationKey command. The structure contains the destination migrationKey (which must be
the MSA public key), the migrationScheme (which must be set to TPM_MS_RESTRICT_MIGRATE) and a digest of
tpmProof.

Key Owner Authorization

The CMK owner passes the TPM_MIGRATIONKEYAUTH to the TPM in a TPM_CMK_CreateBlob using the CMK
owner authorization.

Double Wrap

If specified, through the MS_MIGRATE scheme, the TPM double wraps the CMK information such that the only
way a recipient can unwrap the key is with the cooperation of the CMK owner.

Proof of Control

To prove to the MA and to a third party that migration of a key is under MSA control, a caller passes the MA’s
public key (actually its digest) to TPM_CertifyKey, to create a TPM_CERTIFY_INFO structure. This now
contains a digest of the MA’s public key.

A CMK be produced without cooperation from the MA: the caller merely provides the MSA’s public key. When
the restricted key is to be migrated, the public key of the intended destination, plus the CERTIFY_INFO
structure are sent to the MSA. The MSA extracts the migrationAuthority digest from the CERTIFY_INFO
structure, verifies that migrationAuthority corresponds to the MSA’s public key, creates and signs a
TPM_RESTRICTEDKEYAUTH structure, and sends that signature back to the caller. Thus the MSA never needs
to touch the actual migrated data.

End of informative comment.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 149 of 150
 TCG PUBLISHED

36. Revoke Trust
Start of informative comment:

There are circumstances where clearing all keys and values within the TPM is either desirable or necessary.
These circumstances may involve both security and privacy concerns.

Platform trust is demonstrated using the EK Credential, Platform Credential and the Conformance
Credentials. There is a direct and cryptograph relationship between the EK and the EK Credential and the
Platform Credential. The EK and Platform credentials can only demonstrate platform trust when they can be
validated by the Endorsement Key.

This command is called revoke trust because by deleting the EK, the EK Credential and the Platform
Credential are dissociated from platform therefore invalidating them resulting in the revocation of the trust
in the platform. From a trust perspective, the platform associated with these specific credentials no longer
exists. However, any transaction that occurred prior to invoking this command will remain valid and trusted
to the same extent they would be valid and trusted if the platform were physically destroyed.

This is a non-reversible function. Also, along with the EK, the Owner is also deleted removing all non-
migratable keys and owner-specified state.

It is possible to establish new trust in the platform by creating a new EK using the TPM_CreateRevocableEK
command. (It is not possible to create an EK using the TPM_CreateEndorsementKeyPair because that
command is not allowed if the revoke trust command is allowed.) Establishing trust in the platform, however,
is more than just creating the EK. The EK Credential and the Platform Credential must also be created and
associated with the new EK as described above. (The conformance credentials may be obtained from the TPM
and Platform manufacturer.) These credentials must be created by an entity that is trusted by those entities
interested in the trust of the platform. This may not be a trivial task. For example, an entity willing to create
these credentials my want to examine the platform and require physical access during the new EK generation
process.

Besides calling one of the two EK creation functions to create the EK, the EK may be "squirted" into the TPM
by an external source. If this method is used, tight controls must be placed on the process used to perform
this function to prevent exposure or intentional duplication of the EK. Since the revocation and re-creation of
the EK are functions intended to be performed after the TPM leaves the trusted manufacturing process,
squiring of the EK must be disallowed if the revoke trust command is executed.

End of informative comment.

1. The TPM MUST not allow both the TPM_CreateRevocableEK and the TPM_CreateEndorsementKeyPair
functions to be operational.

2. After an EK is created the TPM MUST NOT allow a new EK to be "squirted" for the lifetime of the TPM.

3. The EK Credential MUST provide an indication within the EK Credential as to how the EK was created. The
valid permutations are:

a. Squirted, non-revocable

b. Squirted, revocable

c. Internally generated, non-revocable

d. Internally generated, revocable

4. If the method for creating the EK during manufacturing is squiring the EK may be either non-revocable or
revocable. If it is revocable, the method must provide the insertion or extraction of the EKreset value.

TPM Main Part 1 Design Principles TCG Copyright
Specification Version 1.2

Revision 62 2 October 2003 Published Page 150 of 150
 TCG PUBLISHED

End of document

