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This set of documents is not a comprehensive design spec for clustering. Rath
is a set of miscellaneous documents including both discussion documents and
work-in-progress design drafts, not for a whole clustering system, but for a cor
of APIs intended to provide a comprehensive and robust infrastructure on top 
which true clustering services can be layered.

So, you won’t find any proposals for IP takeover or for clustered filesystems he
You _will_ find proposals for APIs which will let the IP failover manager commu
nicate the state of the running IP interfaces to the rest of the cluster, or to allow
other services to be started and stopped as appropriate if an IP address is mig
from one node to another. 

The motivation for this work is primarily that although there are many distinct c
tering projects under way for Linux, there is no general-purpose framework to 
vide solutions for some of the hard problems such as quorum management, m
scalability and management frameworks. A successful outcome would be a se
core cluster APIs which are both simple enough that arbitrary other (existing o
future) cluster services can take advantage of them easily; and powerful enoug
there is real benefit to be had from using them.

 In this directory you will find the following documents: [Editor note: the docu-
ments are printed here as chapters 2-13]
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goals.txt: Outlines in a little more detail some of the goals of the work envisage

principles.txt:  A few design principles and justifications applicable to the whole
project.

structure.txt:  Describes the component layers necessary to achieve the initial
objectives.

hierarchy.txt: Describes some of the implications of having hierarchical cluster

Then we have documents describing individual components in some detail:

api.txt: General requirements for the cluster APIs, including at least some deta
of inter-process communication between cluster service processes on a single

recovery.txt: A manager for the local cluster processes on a node. This must d
with both the initial startup of processes, and the coordinated restart after a clu
transition. 

communications.txt: The cluster communications layer: getting nodes to talk to
each other.

integration.txt:  The cluster integration layer: binding nodes into a coherent clu
ter.

discovery.txt:  The discovery algorithm used for cluster reforming in the integra
tion layer.

barrier.txt: The barrier API used for cluster-wide synchronisation of arbitrary s
vices.

quorum.txt: Quorum management: how to tell if it is safe to acces shared clus
data.

namespace.txt:  The namespace manager. Describes the namespace service a
what it is intended to achieve.
Cluster Design Documents
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The primary goals of the cluster infrastructure project are to:

• Provide hooks which allow cluster-wide coordination between arbitrary ser-
vices.  Implementing those services is a separate problem.

• Provide a strong concept of cluster membership, with synchronised,   trans
tional transitions between cluster states when a new node joins the cluster 
existing node dies.

 The long term “vision” includes much which is not anticipated in the initial imp
mentation.  Some of this will be scheduled for future implementation.  We also
want the clustering services to accommodate third-party services which may n
be part of this cluster core itself, but which will place certain requirements on th
clustering which we have to take into account here.  We are particularly concer
with:

• Scalability, both up and down.  We want to be able to cluster a pair of 486es
provide highly available departmental web services out of the Linux cupboa
that a sysadmin installed once.  We want to be able to cluster massive num
(tens or hundreds of thousands) of nodes for Massively Parallel Processing 
that we only want to deal with   the admin/HA aspects of this --- the MPP in
connect is somebody else’s problem --- but this still implies a need for hiera
cal clusters).
Goals 3
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• Scalable cluster filesystem support.  Within one cluster segment, GFS is the
of implementation we want to grow a cluster FS out of, with shared disk acc
on top of cluster-wide shared block devices and shared software raid.

On top of that, a mechanism such as AFS or CODA for migrating files between
cluster segments will be necessary: the shared disk model does not scale well
distant nodes become involved.

• Provide a set of sufficiently simple APIs, without actually enforcing the way
they are used, that nobody in their right mind will consider using any other b
cluster infrastructure to base their HA solutions on.  (Well, it can’t hurt to 
dream, can it?)

  
Goals
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Remember the Unix philosophy:

Do one thing, but do it well.

 There are two basic principles which pervade this design:

Modularity.  Needless to say, modular code is easier to maintain than tightly in
grated monolithic structures. The entire design of the clustering is intended to 
into account the requirements of each module when considering other module
the mechanisms used to implement any specific module are never exposed to 
modules directly except through specified, general purpose APIs.

 This results in certain design features which are alien to most HA clustering im
mentations. For example, Quorum is never considered by the cluster integratio
layer. Quorum is merely another resource which comes and goes in the cluste
nodes join and leave. Obviously it is a critically important resource, and must b
first resource recovered after a cluster transition, but the impact of quorum ma
ment on the rest of the cluster layers is minimal.

State progression.  It is possible to produce very complex state transition diagra
when producing code which operates in the highly concurrent environment in 
which cluster code is expected to run. There is a guiding design principle whic
substantially simplifies many of these state transitions:
Design Principles 5
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 ++ All components of the system which need to construct global (externall
influenced) state and which have to deal with error conditions must maintai
strict priority ordering of states. Only after all neighbouring components hav
acknowledged transition to the same state are we allowed to begin controll
progression to the next state (ie. there is a barrier between each state prog
sion). Error conditions (at least, errors which are expected to trigger cluster
transitions) ALWAYS trigger an immediate abort of the construction of the c
rent state: we move instantly to a state lower in the state hierarchy on error
resume construction of the higher state from there.

 This principle is obeyed in many places. In the cluster communications code, 
(unrecovered) communications error between two nodes triggers an immedate
of link UP status, and we do not allow the link state to come back UP until we 
sure that (a) the other endpoint has also left UP state, and (b) all other commu
tion channels between the two nodes have also been purged of messages from
old UP state. In the cluster integration layers, we have various stages we must
through to build the new cluster: discovery, election, verification and commit. A
error in any of these stages triggers an immediate drop to a previous stage.

 The important property to obey here is that whenever we fall back to such a lo
state, we must have a mechanism in place which ensures that all of our neighb
will also return to that state before continuing: it is necessary to reestablish ag
ment with our neighbours that that has occurred before we can start to progres
state machine again. 
Design Principles
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The following components form the core of the cluster design:

• Channel layer:point-to-point communications 

• Link layer:reliable bound channel sets between node pair

• Integration layer:forms the cluster topology 

• Recovery Layer:performs recovery and controlled service startup/ teardown
after a cluster transition.

There are also four key services which are central to the basic cluster APIs: 

• JDB:stores persistent cluster internal state (and used for the quorum datab

• Quorum Layer:determines who has quorum 

• Barrier services:provides cluster-wide synchronisation services 

• Namespace service:provides a cluster-wide name/value binding service.

Component Descriptions 

Channel layer:  The low-level physical communications layer. This layer main-
tains multiple interfaces (which might be IP, serial or SCSI, for example). Neig
Cluster Structure 7
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bourhood discovery is performed on each interface via broadcast, and after an
neighbour is found, a handshake is performed which creates a permanent poin
point channel to that neighbour over the given interface. The channel supports
sequenced data delivery, heartbeat link liveness verification, and controlled res
error. 

 Interfaces are entirely independent of each other. If the same host is found on
tiple interfaces (ie. we have multiple connections to that host), the connection 
interface is maintained independently of the others.

 Each low-level channel has a metric which determines how “good” that chann
for carrying cluster traffic. A low-performance link is defined as one with a nega
tive metric: serial lines should have this property, for example. 

Link layer:  Built on the channel layer, the link layer constructs a higher-level 
communications mechanism which binds together all available channels to any
given host. The link is in one of four states at any time:

DOWN:No connection to remote host is held. 

RESET:We have had an error, and are temporarily resetting all of the chann
in the link. 

DEGRADED:At least one channel is up and running, but its metric is negat

UP:At least one “good” channel is up and running.

When constructing a new cluster state, the upper layers will use a degraded lin
perform a clean cluster transition evicting one of the nodes on that link from th
cluster. We can use the degraded link to perform this eviction cleanly, adjusting
quorum to take its departure into account. 

Integration layer  This layer performs transitions of the overall cluster topology
merging neighbouring clusters, evicting dead or misbehaving members and en
ing transactional transitions between cluster topologies.

We have to define very carefully what a “cluster” is in this context. A cluster is 
agreement between a set of nodes that all of those nodes can communicate w
each other and are able to form a useful working group together. The cluster is
just the set of connected nodes: it is the *agreement* of connectivity. Cluster tr
tions, such as the joining of a new node into the cluster, are atomic operations
which all nodes agree to the new group topology. These transitions are transac
and atomic.
Cluster Structure
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 A key concept here is the cluster ID. The ID is unique to a single “incarnation”
the cluster. Whenever a cluster splits into multiple pieces, any surviving subclu
which has more than half the votes of the old cluster or more retains its cluste
all other machines are evicted from the cluster and must obtain a new cluster I
(As a tie-breaker, a cluster with precisely half the votes retains its cluster ID iff
includes the previous cluster’s “cluster controller” node among its members.)

 A new cluster ID is generated whenever a machine first enters the integration 
(either after eviction from a cluster or on initial startup). Such a machine consid
itself to form a single-node cluster. As a result, we never have to deal with nod
joining or leaving clusters: we only ever have to deal with entire clusters joining
splitting from each other.

 The cluster ID includes the nodename of the node which generated the ID, an
timestamp. This is done to generate a cluster ID which is unique for all time.

 When a cluster partition occurs, at most one of the resulting new smaller clus
will retain the original cluster ID. However, the remaining cluster members are
all left alone to pick up the pieces: although they reenter the integration proces
single-node clusters, they will not leave the cluster transition until as many as p
ble of those nodes have merged into larger clusters, each of which keeps the c
ID of just one of the subclusters of which it is composed.

 Each cluster also has a sequence number which is incremented on each clus
transition, providing applications with an easy way of polling for potential chan
cluster state.

 The cluster state transition which occurs when a new node joins the cluster or
existing node loses connectivity for any reason is described in integration.txt.

Recovery Manager:  This is the layer which integrates the “Core” (for want of a
better term --- this describes it as well as anything) of the cluster with the Rest
The World --- ie. services.

 The main job of the transition layer is to “recover” from cluster transitions com
pleted by the integration layer. Recovery constitutes a multitude of operations:

 ++ Internal recovery of all registered permanent services must be performe
This typically involves reconstructing the global state of that service based 
(a) the set of nodes in the new cluster and any differences between that an
previous set (note that care must be taken if we take a transition during this
Cluster Structure 9
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recovery!!), and (b) the state of this service on those nodes. For example, a
tributed lock manager might recalculate the hash function used to distribute
directories over the available nodes, and then reconstruct the lock database
based upon the set of locks currently held on each node.

 ++ Recovery of user services. These services are not necessarily running 
time, and do not necessarily possess internal global state (although they m
well rely on external global state, for example the contents of a shared clus
filesystem). On cluster transition, we need to be able to allow user services
which have disappeared from the cluster to be reinstantiated on a new nod
failover), or to notify already-running services of a change of status (eg. failb
after the service’s original node returns). 

 Most importantly, we need to manage the order in which these services are 
restarted. There is no point in restarting the CGI server until the underlying clu
filesystem has recovered.

 The transition layer must therefore know about the dependencies between ser
Dependencies may be inferred from the use of Names in the Cluster Namesp
the Namespace can feed dependency information to the transition manager if 
appropriate. However, the Namespace on its own cannot control recovery: it is
transition manager which allows separate services to coordinate controlled sta
by-stage recovery over the cluster.

 One final job of the transition manager is that it must be able to disable acces
certain cluster services until recovery is complete (with or without the coopera
of the service concerned). It is quite possible that an application can continue 
blindly over a cluster transition as if nothing had happened (this is High Availab
in action!), but obviously any requests from that application to the cluster filesy
tem or to the lock manager must be deferred while those services are engaged
recovery.

JDB:  A transactional database is required to store local state. Every node wit
non-zero vote (a “voting member” of the cluster) is required to have a jdb on lo
read/write persisitent storage in which the Quorum layer can perform reliable 
updates to simple configuration and state information. Sleepycat libdb2 (as fou
GPLed in glibc-2.1) should be quite sufficient.

Quorum Layer:  Keeps track of “Quorum”, or the Majority Voting Rights, in a 
cluster.
Cluster Structure
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Quorum is necessary to protect cluster-wide shared persistent state. It is esse
avoid problems when we have “cluster partition”: a possible type of fault in wh
some of the cluster members have lost communications with the rest, but whe
nodes themselves are still working. In a partitioned cluster, we need some mec
nism we can rely on to ensure that at most one partition has the right to updat
cluster’s shared persistent state. (That state might be a shared disk, for examp

Quorum is maintained by assigning a number of votes to each node. This is a 
figuration property of the node. The Quorum manager keeps track of two sepa
vote counts: the “Cluster Votes”, which is the sum of the votes of every node w
is a member of the cluster, and the “Expected Votes”, which is the sum of the v
on every node which has ever been seen by any voting member of the cluster.
storage of those node records is one reason why the Quorum layer requires a J
this design.)

The cluster has Quorum if, and only if, it posesses MORE than half of the Expe
Votes. This guarantees that the known nodes which are not in this cluster can 
possibly form a Quorum on their own.

 There is one other thing we need to do to be completely secure here. If comp
new nodes (ie. those never before seen in the cluster) are allowed to join a pa
which has no Quorum, we must prevent the new nodes from adding their vote
that partition and disturbing the Expected Votes calculation of other nodes or p
tions. To prevent this, a new node is not allowed to vote until it has, at least on
joined a cluster which already has Quorum. This means that during initial clus
configuration, the sysadmin must manually enable Voting Rights on at least on
node before the cluster can obtain Quorum for itself.

Barrier services.  Barrier services provide a basic synchronisation mechanism 
any group of processes in the cluster. A barrier operation involves all the coope
ing processes waiting on the same barrier: only when all of them have reached
barrier will any of them be allowed to proceed.

 The barrier operation is required extensively by the recovery code for other se
vices, which is what justifies its inclusion as a core cluster service.

Namespace services.  The cluster namespace is a non-persistant hierarchial 
namespace into which any node can register names. The guts of the namespa
includes mechanisms by which processes can not only register names, but als
up dependencies on names.
Cluster Structure 11
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 All failover services will be coordinated through the namespace. If multiple no
try to register the same name (and if they request exclusive naming), for exam
only one will be granted the name. If that node dies, another’s request for the n
will succeed, and failover will be triggered once the name assignment is comp

 The namespace will also provide a natural mechanism for determining depend
cies between services: any process can register a dependency on a name and
receive asynchronous callbacks if the condition of that name changes (either if
name disappears or its ownership changes due to the death of a process holdi
name).

 As a consequence of the binding of names to services, it becomes easy for a
application to find all the services in a cluster or to locate on which node a spe
service (such as, for example, a failover-capable printer spool queue) currently
resides.

 Finally, the namespace aims to make cluster administration simple by providin
simple method by which the admin can query all or selected bound names in a
ter, much as /proc already provides the dynamic information on a single Linux
node. 
Cluster Structure
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[ Read past the definitions to the justifications bit if you just want to get an ove
view of what we’re trying to achieve here. ]

Definitions

For the discussion of hierarchical clusters, we need to make a few definitions. 

First of all, let us define what a hierarchical cluster is. A single, FLAT cluster is
some virtual entity born from a collaboration between (probably nearby) nodes
network. We can call this a FIRST-LEVEL cluster. Those nodes are the cluster
MEMBERs, and together they form the clusters MEMBERSHIP LIST. Each clus
has, at all times, a unique privileged node known as the CLUSTER LEADER. T
node does plays a key role in coordinating cluster transitions, but other than th
does not necessarily perform any special work during the normal running of th
cluster.

If we want to combine clusters into larger units, we want to be able to support 
binding of many clusters into a single HIGHER-LEVEL cluster, or METACLUS
TER. That cluster is formed from the clustering together of all of the cluster lea
of the cluster’s MEMBER CLUSTERS: those cluster leaders, together, form th
Hierarchichal Clusters 13
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metacluster’s membership list. The metacluster’s subcluster list is therefore a d
ent concept from its membership list: if a subcluster undergoes a state transitio
elects a new cluster leader, then that new leader will replace the old one in the
cluster’s membership list, but the metacluster’s subcluster list remains the sam
The complete list of all member clusters of a metacluster, and all the members
those member clusters right down to the first-level clusters, forms the metaclu
SUBCLUSTER LIST.

A metacluster of first-level clusters constitutes a second-level cluster. A metaclu
of those second-level clusters forms a third-level cluster, and so on.

We can observe that in a large corporate network being managed as a single c
(we can dream, can’t we? :), we really do not want all of our labs’ test clusters
cause corporate-wide cluster transitions whenever a test machine dies. Not at
rate at which I reboot test machines, at any rate. This is the “S-Cluster” case.

On the other hand, we can also envisage large compute clusters of tens or hun
of thousands of nodes in which we want to support high rates of cluster traffic 
cluster-wide shared resources (such as cluster-wide locks). We simply *have* 
reclaim such locks when a node dies (DLM semantics require it), so in this sec
large “L-Cluster”, every node is significant as far as cluster-wide recovery is co
cerned.

This implies that, when looking at any given level of the cluster hierarchy, there
may be nodes underneath which participate in recovery, as well as those whic
not. We define these as PEER nodes and SATELLITE nodes respectively. For 
cluster, all of the peers taking part in that cluster’s recovery form the clusters P
LIST or PEERAGE. Any given node may be a member of the peerage for its o
cluster and for any number of higher-level clusters. Above that level --- it’s PEE
LEVEL --- the node is a satellite. A true satellite in the first-level cluster has a p
level of zero.

 *** MISSING: Define exactly what a satellite’s relation with the higher level clu
ters is. In particular, does a satellite always proxy through peers in its own clus
There may not be any such nodes. The satellite may _have_ to go to some ou
node in a higher level cluster.

*** Think also about what happens if a node is a peer only up to a certain leve
loses the ability to be a cluster leader above that level. Does this affect proxyin
much? I need to draw this out before expanding on this much, and before com
ing any more detail on the recovery specs.
Hierarchichal Clusters
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This has one major implication for the design of the integration layer. The fact t
only cluster leaders can be members of a higher level cluster implies that only 
nodes with the highest peer level in any cluster may be cluster leaders for that
ter. If we did not observe this rule then we might find that a higher-level cluster 
could not convene because none of the nodes capable of being peers at that l
were leaders of their respective clusters.

Connectivity

The peerage for a cluster contains all nodes in that cluster expected to partake
cluster-wide shared state such as lock management. Any peer may be acting 
lock holder or a lock master at any point in time. As a result, we should expect
a node be connected to all its peers at all times.

However, although a flat cluster guarantees any-to-any connectivity, a metaclu
only guarantees such connectivity between its own cluster members (ie. the le
of the subclusters). We need to augment this with a fault-reporting mechanism
which any peer can report suspected loss of connectivity to another, so that on
the partially connected nodes can be removed from the cluster. The metacluste
mechanism does not need to provide the fully-connected guarantee itself as lo
there is an independent fault manager somewhere in the software stack which
deal with a breakdown in communications.

Justification

What does this big mess of stuff actually add to our clustering? First of all, we 
that some form of hierarchy is absolutely necessary in order to scale. We cann
guarantee any-to-any connectivity between a million nodes without swamping 
communications fabric. In an L-Cluster of such a size, we might expect the MT
to be under sufficient control that we only suffer a cluster transition every few m
utes, but it is hard to imagine establishing any-to-any comms between that ma
machines quickly enough that we can recover in time for the next failure.

In a distributed S-Cluster of similar size, the situation is different. We expect a 
lower MTBF (or at least the mean time between transitions, MTBT) to begin w
(because we may have test machines and workstations being rebooted for per
Hierarchichal Clusters 15
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valid reasons). We also expect to have much less bandwidth between some of
metacluster members (we may have remote clusters linked over external IP co
tions) and to have very asymmetric load capacity (say, only a few servers capa
acting as metacluster leaders at each site).

How can we deal with these problems? First of all, in an L-Cluster, the limiting
tor is the requirements for synchronisation between all machines in the cluster
when something goes wrong. Verification of any-to-any connectivity requiring e
only a million broadcasts will be hideously expensive. However, with a dense 
enough fabric, we might expect that broadcast from one specific node can be d
efficiently enough, even if only simulated via point-to-point interconnects. We c
use the cluster hierarchy to distribute broadcast messages from the cluster lea
each cluster member, ie. to the leaders of all the subclusters, and repeat the p
down the cluster hierarchy until all nodes have been contacted. The acks from
node can likewise be propagated back up the tree and merged into a single ac
the top level. The total number of packets transmitted over the entire fabric is O
but the total forwarding distance is only O(log(n)).

In other words, as long as recovery of the cluster services (such as the DLM) c
performed using such fan-out/fan-in broadcast+ack communication primitives,
recovery of large numbers of machines should be feasible in a short time. By u
hierarchical clusters, the individual cluster membership transitions involved can
lightweight, typically only involving ten or so nodes at once (the most complex 
cases involving death of a cluster leader). However, that membership transitio
result in the eventual recovery of large numbers of nodes, because we can allo
low-level cluster transition to result in peer recovery of any metaclusters involv

If a cluster transition only involves the arrival or departure of nodes which are s
lites to the metacluster, then the metacluster’s peer list is unaffected and no re
ery is needed at all. This is the property which allows us to conceive of extrem
large S-Clusters using this design. The fact that nodes may be peers only up to
certain level and satellites above that level allows us to limit the number of pee
which are present in the higher levels of the metacluster. This reduces both the
number of transitions in those higher levels (keeping cluster availability high), i
also reduces the high-level cluster’s traffic.

In short, we envision two scenarios. In L-Clusters, the top-level cluster traffic is
high but the fabric is dense, and the main job of the hierarchy is to limit the cos
completing cluster membership transitions. Recovery itself is always done at th
top level of the cluster, because most resources in the cluster are shared arou
entire cluster.
Hierarchichal Clusters
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In S-Clusters, most resources are local to subgroups in the cluster hierarchy. T
cluster hierarchy’s main job is to prevent there from being many transitions at 
the top level cluster, even if lower level clusters are transitioning regularly. The 
cluster hierarchy removes the need for the top levels to carry any traffic at all w
an internal node of some subcluster dies, as long as that node’s peer level is le
than the metacluster’s own level.

Naming

In a cluster hierarchy, any one node may in fact be a member (or a peer, or a s
lite) of many nested clusters. When a process wants to access a cluster resou
will need to indicate which of these metaclusters it is talking about. We also ne
way to identify other nodes in the cluster or metacluster.

There is one major requirement for the naming which we must not forget, howe
It is important that the clustering API supports the ability for existing clusters to
bound into metaclusters without upsetting any applications already running on
old clusters. In other words, adding a new level of metacluster should not inva
the names being used to identify existing clusters and nodes. This basically pr
vents us from using any naming which relies on a unqiue name for the root (to
level) cluster in the hierarchy.

Consider as an example a hypothetical cluster I might set up. Say I have a clu
“SCT” for my own PCs. I might configure sub-clusters “DEV” for the developme
workstations, and “TEST” for test boxes. My primary machine might then be 
“DESKTOP”, with a cluster pathname “SCT/DEV/DESKTOP”.

That “SCT” cluster could be bound into a “SCOT” metacluster for all Red Hat s
in Scotland, and _that_ cluster could be bound into the top-level “REDHAT” clu
ter.

Consider that Alan Cox may have a similar set of clusters in Wales for his own
machines: so we have a “WALES” cluster in “REDHAT” too, with subclusters 
“ALAN” and “DEV”.

How does naming look in this example cluster hierarchy?

Well, my desktop box in this example is present in four different clusters: 
“REDHAT”, “SCOT”, “SCT” and “DEV”. Remember that my desktop box may 
Hierarchichal Clusters 17
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actually be a peer of any or all of these levels, and as such may actually be a 
leader for any of these clusters: as such, that machine is not just several levels
removed from the REDHAT cluster, it might actually be the master cluster lead
for that whole metacluster.

So, it doesn’t make sense to say that that machine belongs to one level of the 
and not to others. There is no default level of the cluster which the API works a
the machine may be a cluster member of, and will be a peer of, many different
ters at once, all of them equally legitimate clusters.

So, these four names --- “REDHAT”, “SCOT”, “SCT” and “DEV” --- must be 
unique, so that they can be referred to as local cluster names all on equal foot
follows that no one path through the cluster hierarchy must ever include two cl
ters or metaclusters with the same name.

How then can I refer to Alan’s main desktop machine from mine? Well, Alan’s b
is not in the “SCOT”, “SCT” or “DEV” clusters but it does exist under “REDHAT
so I can refer to his development cluster as “REDHAT/WALES/ALAN/DEV” and
to his machine as “REDHAT/WALES/ALAN/DEV/DESKTOP”. Note that if we 
then decide to bind the whole “REDHAT” cluster into a higher-level “LINUX” 
cluster including other organisations, “REDHAT/WALES/ALAN/DEV/DESK-
TOP” still uniquely identifies Alan’s desktop machine. In this case, the name 
“LINUX/REDHAT/WALES/ALAN/DEV/DESKTOP” will be an equally valid 
name for the same machine.

There is an important related question here. Do we want a cluster namespace
which cluster peers are named too? In other words, in the example above, doe
name “DESKTOP” resolve to my desktop machine, or is it an unknown name 
because there is no cluster with the name “DESKTOP”?

This really depends on which software component is doing the lookup. As far a
cluster APIs are concerned, when you request a cluster handle to operate on, 
always supply a cluster name and a security domain, never a node name. As a
result, the question of namespace clashes between cluster names and node n
simply does not arise.

However, some interfaces may want to allow both nodename and clustername
ences transparently to the user. For example, we may want to be able to telne
to be able to send print jobs to, either a specific node or just to the cluster (rely
on the cluster software to redirect the connection to an appropriate machine). 
such cases, “<clustername>/<nodename>” will be the correct way to produce 
Hierarchichal Clusters



Recovery

el 
me 

 
em-

xam-
it is a 

ster 
ied 

hip 

the 
lead-
 dead 
ective 
r 
nd 

f 
ath of 
 tran-
lus-

ting 
ppens 
 one 
m-
of 
composite nodename including the clustername. However, for all of the low-lev
cluster APIs, such forms will not be recognised: the cluster name and node na
will always be distinct things as far as the API is concerned. 

Recovery

In a hierarchical cluster, we have different membership lists which can change
when transitions occur. At each level of the cluster, we have both the cluster m
bership and the peer membership to worry about.

These two types of recovery are quite distinct things. In a large L-Cluster, for e
ple, when a node dies it will cause a transition in the smallest cluster of which 
member, and will of course also cause a peer membership change there.

However, in the higher-level metaclusters in that L-Cluster, there will be no clu
membership transitions (unless we were unlucky enough that the node which d
was the cluster leader of its local cluster, in which case there will be members
transitions at higher levels as new a cluster leader is elected). 

There _will_, however, be a peer membership change in all parent clusters of 
local cluster of the dead node. That is the whole point of the L-Cluster: cluster 
ers in each metacluster can communicate the information that a certain node is
upwards to the top-level metacluster, and we can then take any necessary corr
action to perform a controlled transition on the peer membership of that cluste
without having to perform expensive verification of the integrity of the clusters a
the connectivity between every single surviving pair of nodes in the full cluster.

Consider then what happens if we have, for example, a large cluster filesyste
using a distributed lock manager which is consistent over the entire L-Cluster o
several thousand nodes in a large High Performance Computing cluster. On de
a node in that cluster, a few localised machines perform a cluster membership
sition, and then they perform a peerage recovery (performing recovery of any c
ter services which are operating at the level of that local cluster). 

That local cluster then sends a message to the next higher level cluster indica
that there is a change in the peer list for that cluster, and peerage recovery ha
for that cluster... and so on all the way to the top-level cluster. Therefore, when
machine joins or leaves the cluster, we do not have to perform a full cluster me
bership transition for the whole cluster: rather, we have the much simpler task 
Hierarchichal Clusters 19
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dealing with a peerage transition in which we are simply told by one of the clus
members exactly what has happened to the peer list. We don’t have to work ou
what went wrong.

This is necessarily a more scalable scenario than having every member of a 1
node cluster have to negotiate with every single one of its neighbours every tim
node joins or leaves the cluster! But is it scalable enough? Can we perform rec
efficiently for coherent services such as a DLM on such a large cluster when th
peerage changes?

I believe we can, because the hierarchical nature of the cluster gives us a way
contact all nodes in the cluster efficiently. On peerage transition, the cluster lea
can begin the transition by sending a command to each of its cluster members
is a hierarchical cluster, so the top-level metacluster members are actually the
ter leaders of the next-level-down metaclusters, and those cluster leaders can
fan-out the message down to all of their cluster members, and so on down the
ter hierarchy until all peers in the entire cluster have been contacted. Replies c
fan-in up the cluster hierarchy in a similar manner

As long as peerage recovery can be expressed in terms of such fan-out/fan-in
cast operations, plus limited point-to-point traffic between specific nodes, we c
use the cluster hierarchy to make peerage recovery sufficiently scalable to wo
well even on enormously large HPC clusters.

 What about the S-Cluster case? In a typical S-Cluster, this distinction between
and membership transition again does exactly what we want it to do. If we hav
some remote location in a company with its own internal metacluster, and furth
sub-clusters inside that according to the pattern of use of the machines there, t
an S-Cluster we would only have a few machines at that entire site which were
peers for the organisation’s higher level clusters. As a result, any node arrivals 
departures within that site, as long as they don’t concern those high-level peer
ers, will not cause any membership _or_ peer transition in the top level cluster

 Irregular Hierarchies

Think about the implications of: 

• Different cluster subtrees having different depth 
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• Binding clusters together into metaclusters without reconfiguring every mem
of every subcluster.

Authentication

Permission --- to join a cluster, to become a peer (especially for metaclusters).
have different cluster passwords for a metacluster, then how do we decide wh
one wins (ie. which is the real metacluster, which is spoofed? Over an organis
can we realistically rely on nobody doing the wrong thing?)

 LocalWords: subcluster metacluster’s metacluster ie subclusters MTBF comm
LocalWords: MTBT acks ack metaclusters MEMBERs cluster’s DLM proxying 
HPC LocalWords: transitioning localised neighbours organisation’s spoofed 
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CHAPTER 6 Cluster API
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Here we will discuss a number of issues relevant to the creation of clustering A
These issues only concern the API as expressed on a single node.  They may
with communication between a user process and a cluster server process on o
node, for example, but we be will completely ignoring issues to do with commu
cation between cluster nodes here.

Issues to be dealt with uniformly

In designing the way we build APIs for the cluster core services, there are a nu
of specific problems we have to solve, including:

•  Dealing with client death

•  Security

•  Cluster node naming

•  The specialised needs of recoverable services

•  Efficient ways to specify async event delivery

Those are the problems themselves, but we also need to bear in mind that to 
the code maintainable we need to aim for:
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•  Consistent APIs

•  Isolation of the future complexity of hierarchical clusters in a forward-comp
ble manner

• Modular implementation of the common API functionality such as security a
event delivery.

• Flexible implementation.  As an absolute minimum, I require that all the AP
being developed are capable of being implemented both in kernel space (on
Linux boxes) and in user space (using threads if necessary, and preferably 
ble to other Unixen).

 Dealing with client death

However the API is implemented, it is absolutely imperative that the code impl
menting the service on each node is able to detect the death of a client proces
which is holding a cluster resource, so that it can release that resource.  If the 
vice is being implemented in the kernel then obviously it is easy enough to tra
process death, but we need this functionality for services implemented by serv
daemons too.

A cheap way of obtaining this notification is for the service to be implemented 
sockets.  Unix domain sockets have reasonable efficiency for local process inte
communication, and the server can easily detect the death of a process conne
by such a socket.

A kernel-based implementation of cluster functionality will probably use dedica
syscalls instead, but kernel implementations always have more freedom to play
clever games to achieve the necessary functionality.  It is the user-space imple
tation which is more constrained by available unix functionality, so right at the s
I will make the assumption that all requests passed between client processes 
the cluster APIs and cluster service daemons implementing those services will
done using unix domain sockets.  (Other communication channels, such as sig
and shared memory, can be used to augment the socket-based communicatio
of course.)
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Why do we need security?

Our filesystems, shared printer queues and cluster namespace will all be using
ter resources.  They will _all_ require barriers for recovery; some will require c
ter locks, some will require cluster name bindings.

If we allow unrestricted access to these resources by any user, then we have j
allowed an unprivileged user to violate the integrity of the entire cluster core.  

Simple Unix uid mapping is not sufficient to solve the security problem. In a lar
heterogeneous hierarchical cluster there may be many uid spaces participatin
the cluster.  We also want to support partitioned namespaces: not only should 
vidual resources (which we might conceivably uid-protect) be inaccessible to t
wrong user, we may sometimes also want the namespace itself to be unbrowsa
unprivileged clients: thus we need protection on the whole namespace too, not
uid protection on individual objects.

For the purposes of the core cluster APIs, I propose a very simple mechanism
allow for multiple security domains: simply use the filesystem to mediate the c
munication between client processes and the cluster service daemons, and us
names to name security domains.  For example, we might have pathnames

/tmp/cluster/<CLUSTER-NAME>/sockets/namespace/USER 
/tmp/cluster/<CLUSTER-NAME>/sockets/namespace/SYSTEM

which refer to unix-domain sockets by which clients processes can connect to
send request to the local node’s cluster namespace daemon.  There would be 
ference between these two files except for permissions: normal filesystem mod
and attributes can be used to set appropriate permissions on each such socke

Note that we define these two security domains to be valid on all cluster syste
SYSTEM is the default security domain in which privileged cluster services op
ate; USER is the default domain for application cluster requests.

There is a second advantage to this mechanism: it allows us to pass security c
tials for these cluster sockets around using standard unix fd-passing.  This lea
the option open that at some point we can implement a security server to auth
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cate individual processes’ access to higher privilege levels, granting those priv
leges by passing back an appropriate socket fd.

If we have many such security domains, then obviously we want some way to 
ensure that they can be set up automatically in each socket directory and that 
missions are set up appropriately on each host. However, at this stage this me
nism simply lets us say that security domains via socket permissions provide t
functionality we want: the management on top of that is another layer which we
ignore for now.  (The API won’t care who is responsible for setting up these soc
as long as they exist.)

If we want to apply uid-based ownerships to objects within a specific cluster se
then we are certainly free to do so, so long as we can detect the uid associate
a connection to one of the server sockets.  

Note that the core API library services being shared by the various cluster API
use these security domains in whatever way they want. They may choose to d
each security domain as a separate namespace or to have them share a nam
They may choose to allow browsing between security domains or not.  The co
decision may very well depend on the service: lock manager domains may wa
be totally opaque to each other, but the cluster namespace service’s whole po
to make all the cluster name bindings visible in a single namespace, for exam

*** I’m open to suggestions concerning whether or not uid/gid/mode *** protec
tion should be implemented as a required option in the APIs. *** The requireme
that the cluster should still work if we cross uid *** mapping domains makes th
unclear.  The real question is: should *** arbitrary unprivileged code have acce
the cluster namespaces at *** all?  If so, then uid protection on resources is ne
sary.

Cluster Node Naming

Consider a hierarchical cluster containing a top level cluster ORG, and subclus
all the way down to ORG/UK/EDIN/DEV/TEST/TEST1.  A node in that cluster 
say, ORG/UK/EDIN/DEV/TEST/TEST1/TESTBOX2 --- may want to participate
in cluster services at any of these levels. We need to be to specify exactly whic
these layered clusters we are referencing in every single API call to a clustere
resource.
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Fortunately, the pathname-based access to cluster services proposed for secu
domains is also ideal for separating out access to different clusters: we simply
include a cluster-name component in the pathname used to access the cluster
socket.  We already have a requirement that any cluster name will never appea
more than once in a fully qualified hierarchical cluster or node name, so these 
names are guaranteed to represent unique references to a specific level of the 
hierarchy on any given node.

As far as the API is concerned, I propose that all access to cluster services by
cess be preceded by a call to

extern struct cluster_handle get_cluster_handle(const char 
*cluster_name,    const char *security_domain,    int flags);

and that the “struct cluster_handle *” returned by this call be used as the first 
parameter to every subsequent call to cluster resource APIs for that cluster.  T
allows the user to talk to multiple clusters and multiple security domains at onc
while still hiding the details of how we might implement these features.

Recoverable Services

Things are more complex when we are doing recovery.  The APIs must be abl
continue to work selectively during recovery.  

As an example, the barrier API may be being used by a pair of cooperating us
processes on two different nodes when a third node joins or leaves the cluster
cluster transition does not affect the barrier, so the user applications should no
notice any change: the barrier API should just be stalled temporarily during th
transition.  However, an internal cluster service such as the namespace servic
completely different matter: it may rely on the barrier API in order to synchroni
its own recovery.

Similarly, lock manager traffic may be suspended during transition and resume
afterwards, but a clustered filesystem may want to perform its own lock manag
operations during the recovery period.  Note that this example shows that we m
be prepared to have the same resource visible both during recovery and for no
operations: we cannot simply partition the resources visible during recovery in
separate security domain as described above.
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The default behaviour for the API _must_ be that a cluster transition causes a 
porary stall but no other observable behaviour for applications which are not u
resources affected by the transition. For APIs such as the namespace and loc
ager, a node death releasing a resource ought to be largely indistinguishable f
voluntary release of the same resource as far as the effect on other nodes in th
ter is concerned.

So we have two problems: 

•  How do we specify that a specific API request is recovery-privileged and 
should not wait until the end of recovery?

and

•  How do we restrict this functionality to privileged processes only?

We can achieve both of these by adding a recovery-ok flag to the flags in the “f
handle to the get_cluster_handle call, and restricting that flag to be legal only o
SYSTEM security domain.  That allows an application to obtain a separate clu
handle to pass through API calls which want to run during recovery.  It avoids p
luting the API of other calls with recovery information.

Asynchronous Event Delivery

One of the important things that the cluster API must be able to do is to delive
events asynchronously to processes.  Cluster transitions, loss of a barrier if a p
ipating node or process dies, or notification that another process wants to stea
lock are all async events which a process using the cluster API will want to de
with.

So, how do we handle cluster callbacks to the user process?  The normal Uni
mechanism for this is to use signals, of course.  However, we have several prob
with that:

•  We do not necessarily want our cluster service daemons to run with privile
to kill every process in the system; and

•  It is impossible to pass arbitrary data through a signal on Unixen which do 
implement posix queued signals;

•  The client cannot tell how many signals were received;
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•  There are a limited number of signals available but arbitrarily many differen
events which may occur in a cluster (in a lock manager API, for example, e
lock a client process owns may have its own callback routine to be called w
that lock is wanted by another node). 

We can address all of these problems by using sockets.  We can allow the clie
give the server an arbitrary cookie of information to be associated with a poten
future event.  If that event occurs, the server will simply pass that event back to
client via a unix domain socket reserved for those callbacks.  Even if the Unix 
implementation being used only supports SIGIO, that is enough for the local lib
part of the API to trap the IO, decode the cookie and perform the callback.

This obviously restricts the caller’s freedom to use SIGIO.  That’s unfortunate, 
unavoidable if realtime sigio is not available.  On recent Linux kernels we can 
realtime queued sigio to use a different signal for the async callback socket, to
avoid interfering with the normal signals.  

Obviously, a mechanism by which the signals can be blocked is required, and 
mechanism must be exposed in a portable way to the user.

More of a problem, we must have a way to sycnchronise these cookies with ot
foreground events.  That is the responsibility of the API library in the user proce
For example, if the user creates a lock with a callback, then deletes that lock, 
is a chance that the server has already sent us a callback on that lock: the API
when it is decoding the cookie, detect that the callback is no longer valid and m
silently discard it rather than delivering it to the application.

---------------------------------------------------------------- 

 LocalWords:  APIs async Unixen namespace uid namespaces unbrowsable u
ok  LocalWords:  service’s ORG subclusters struct const 
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Recovery Types

In most existing cluster systems, recovery is a process initiated directly after a
cessful cluster transition, and that is the end of the story. That is also more or l
true in a flat, peer cluster in our cluster model, but the existence of either sate
nodes or a cluster hierarchy complicates things somewhat.

We need to make a clear distinction, then, between different events which can 
in a cluster or metacluster. (Refer to the definitions in hierarchy.txt: they are qu
important here.)

• CLUSTER TRANSITION is the event which occurs when a cluster’s membe
ship list changes.

• CLUSTER RECOVERY is the recovery initiated with respect to that membe
ship list.

• PEER RECOVERY is the recovery initiated with respect to _every_ peer in 
cluster’s peerage.

• SATELLITE RECOVERY is the recovery initiated with respect to satellites f
which this node is responsible.
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Recovery Daemon

Once a cluster initiates recovery, we need to signal the various cluster daemon
recover in some given order. Obviously, the task of starting up the cluster in the
place also has to establish cluster services in some order, and the order in eac
is dictated by the various dependencies between services. In other words, star
cluster services when a new node joins a cluster is related to recovery. 

We can also notice that there are certain cluster services, such as the comms 
barrier services, which are relied upon to provide cluster-wide synchronisation 
primitives. Without those primitives in place, there is no cluster-wide recovery. 
There is therefore dependency between recovery services on a single nodes a
as there is dependency between nodes. 

Therefore, we need to have a local daemon which can order services to recov
the appropriate order, even in the absense of cluster-wide synchronisation. Ob
ously one of the first services to be recovered should be the barrier synchronis
service so that later recovery stages can rely on that for cluster-wide synchron
tion. 

This daemon will also be responsible for the startup of the local node’s variou
cluster daemon processes, as those need to be started up in the same order i
we deliver recovery orders. As a secondary issue, this same master daemon w
responsible for detecting the death, or failure to respond, of any cluster service
mon and to kill and restart the entire cluster stack if that is detected.

 /cbin/init starts up all internal cluster components, and on failure (process dies
process fails to respond in a given timeout) will kill and restart all components f
scratch.

One possibility is to organise it along the lines of inittab, with a controlling /cetc
inittab file:

0:/cbin/ccomms
0:/cbin/integrate
0:/cbin/barrier
Recovery
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 one 
1:/cbin/nameserv
2:/cbin/confrelay
3:/cbin/quorum
4:/cbin/cdb

-----

* On cluster transition start (or peerage transition):

 init signals each cluster component that we have begun transition. (Tag the tra
tion with the new local transition sequence number.)

* On cluster transition end:

 Once all components have ACKed the transition, go through each component,
by one, doing: 
+ Send a recovery event with the new transition sequence 
+ Wait for a recovery ACK with the right sequence number

 Wait for a second, recovery-complete ACK to arrive from all services.

 Complete the recovery barrier. 
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How do applications in the cluster talk to each other?

This is a more complex question than it first appears. There are a number of th
to note:

• We may want communication path failover on hardware failure.

• Flow control is a _very_ complex thing, and we do not want to invent tcp if w
can avoid it, so reusing existing networking code is important where possib

• In the future, we will want to allow cluster communications to use advanced
high performance transports such as Myrinet or VIA.

The cluster integration layer protocol is a special case here because it has an 
tional requirement: it must be able to support arbitrary additional, low-performa
communication channels between nodes to allow arbitration when a cluster fau
occurs. For example, two nodes on a shared scsi bus may eventually allow inte
tion-layer communications over that scsi bus by using target-mode in the scsi 
trollers, and a backup serial or parallel connection between nodes may also ex
The sole purpose of such backup connections is to allow the cluster to negotia
graceful exit of one node from the cluster, so that (for example) if the ethernet
between the nodes in a two-node cluster dies, we can recover without losing q
rum. We cannot expect necessarily to be able to reuse the normal network sta
such communication paths in all cases.
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For all other communications, I propose that we simply use the normal socket 
with these additions:

• We should provide an augmented gethostbyname() to return IP addresses 
nodes named in the cluster namespace. We will expect all cluster nodes to 
an IP address, regardless of what other extra transports may be available.

• Normal inter-application communications should begin by binding a socket 
using modified versions of “bind” and “connect”. The “cluster_bind” and 
“cluster_connect” variants will not use the standard struct sockaddr to name
local and remote host: rather, they will allow a cluster node name to be prov
instead.

These modified calls will simply return a socket which the application can use 
before. In the first case, such sockets will always be IP sockets. In the future, w
may have VIA support too, and in this case adding VIA sockets to the kernel w
allow existing cluster applications to use the new transport without modification

However, the normal socket API will never get the very best performance out o
VIA: it will always be necessary to provide an additional API to support pre-po
ing of read buffers, for example, if we are to provide the very best zero-copy pe
mance over VIA. Applications will need to be coded to that additional API if the
are to make use of the highest levels of performance, but the use of sockets w
cluster naming as our standard inter-application cluster communications API w
least allow VIA to be used with some respectable performance gain.

Note that the use of normal IP sockets for inter-application traffic has two impli
tions: such traffic will not necessarily observe cluster transitions, and the clust
software itself will not be able to route around failures. That is fine: there is no 
for most applications to see cluster transitions, as the various cluster APIs offe
by recoverable services such as cluster filesystems and lock management will
node failures transparent to the applications. 

As for routing, we assume that enough routing will be performed as a part of th
management cluster services that any IP sockets running between the nodes 
cluster will survive any single node death. Ensuring that property will be an im
tant job for the IP address failover core service.

In a hierarchical cluster, the cluster layer does not guarantee that all peers can
essarily see each other at all time. In the presence of routing glitches, two or m
cluster leaders may form a metacluster even though some members of one su
ters are not visible to all members of another subcluster. We must have a fault 
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reporting API defined to allow the applications to verify that communications a
still working between any two arbitrary peers, so that if any pairwise connectio
does fail, the fault can be remedied by the eviction of one or other of the failed 
nodes.

 For core, recoverable cluster services, there is precisely one communication p
tive that we will rely on to be truly scalable in the case of large, flat HPC cluste
Namely, any cluster leader must be able to send a reliable broadcast RPC to a
peers in that cluster. That will involve the cluster leader passing the RPC to all
cluster members, which of course is the same as passing it to the cluster lead
all the subclusters. Those will pass it down to the next-level-down cluster leade
and so on until every cluster leader of the lowest-level cluster have received th
message; at which point the RPC can be executed on each cluster peer, and t
resulting ACKs passed back up the cluster chain to the metacluster leader. 

This fan-out/fan-in primitive provides a fast way of propagating cluster transitio
orders to every peer in the cluster when a peer transition occurs, and it will be 
important to support this for very large scale clusters.
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CHAPTER 9 Integration
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*** : comments regarding open discussion points for the reader @@@ : comm
regarding open discussion points for the author. Kick me if there are still too m
of these by the time you read this document!

 The Integration Layer

Concepts

Cluster Controller:  The single node which is responsible for coordinating a clu
ter transition. The first task during cluster transition is election of such a Cluste
Controller. 

Cluster Map:  A “Cluster Map” is the picture, maintained at any node in a clust
of what the cluster appears to look like from the point of view of that node. Eve
cluster has a Cluster Map which indicates the members of that cluster. This is 
“Current Cluster Map”.

 During a Cluster transition, we must also maintain a “Proposed Cluster Map”, 
which describes the state we think we are moving to. This map is dynamic: a c
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transition may involve resetting of communication links all over the cluster, res
ing in many nodes temporarily dropping and (hopefully) resuming communicat
with their neighbours, or multiple new nodes finding and rejoining our cluster. T
Proposed Cluster Map is updated on each such communications event. Once
Proposed Cluster Map has stabilised, the Cluster Controller makes a Commit 
ter Map out of it and begins a 2-phase commit of that new state around the clu

API 

No, there’s nothing here yet. 

Overview

Overview.  The Integration Layer is supposed to do absolutely nothing while th
cluster is running normally. Only when circumstances change is it invoked. The
Events which affect the Integration Layer are usually generated by the Link La
They include:

 ++ New Link.  This event merely announces the discovery of a new node on th
network, and the establishment of a Link to that node. No link state is implicit i
this message: we expect a Link State event to follow, and no cluster transition 
invoked until we get that Link State event.

 ++ Link State.  A Link’s state (Down, Reset, Degraded, or Up) has changed. 
Oops: time to begin a cluster transition. If a cluster transition is already in prog
this requires us to update the Proposed Cluster Map and adjust the transition s
necessary.

 *Every* Link State event causes a cluster transition to be initiated on the loca
node.

 ++ Operator Intervention.  We must support external commands to modify the
cluster map. For example, the operator may request that a specific node be tak
of the cluster for maintenance; node shutdown must also perform a clean clus
exit.
Integration
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Operation Requirements

Before launching into a design discussion, we need to be clear about some of
properties required of the cluster integration layer. This section will act as a ra
nale for some of the design decisions below.

Remember that all cluster transitions merely involve merging or partitioning of 
existing clusters. This property is a result of the design decision to consider bo
newly restarted hosts and hosts evicted from an existing cluster to be single-no
clusters in their own right: the construction of a new, larger cluster of such host
merely a sub-case of the merging together of two clusters, rather than being a
cial case in its own right.

Partially connected clusters.  This happens. We need to deal with the situation 
where some members of a cluster can see some, but not all, of the others. Thi
result from a fault occurring in a working cluster. We also need to deal with the
uation where we are proposing the merging of two or more smaller clusters, b
where not all of the merging machines can see each other.

 We can define the Cluster Superset at any node to be the set of all nodes whi
connected to that node, or which are in the Cluster Superset of any connected
nodes. The Cluster Superset is the transitive closure of the direct point-to-poin
node connectivity relation.

 We have several requirements resulting from the need to deal with partially co
nected Supersets. First of all, the cluster integration protocol needs, at some l
to propagate cluster connectivity information over all the nodes in the Superse
When we merge a set of machines into a larger cluster, we need somebody to
the largest fully-connected subgraph of the Cluster Superset (or, rather, the su
graph with the most votes) to form a new cluster.

 We need to ensure that this configuration is stable. Any attempt by one of the 
rejected nodes to join the new cluster must be rejected. We can ensure this by
matically failing any merge between clusters if any of the nodes in one of the m
ing clusters is unable to see any of the nodes in any other cluster in the merge

Operation Requirements: Cluster merge.  A cluster merge is the process which
occurs whenever any node detects the existence of a neighbouring node whic
the same cluster name but which is not currently a member of its cluster. The c
merge simply combines the two newly connected clusters together into one lar
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cluster. Given that all nodes start off operating as single-node clusters, this me
nism will deal with individual nodes joining an existing cluster as well as with tw
previously-partitioned clusters reestablishing connection with each other.

 As we just mentioned, it is important for a cluster merge to result in a new clu
which actually works. We require that clusters must be fully connected at all tim
so this means that a merge must preserve this property. We can simplify our o
tion enormously by ensuring that we only ever try to merge working clusters. If
do this, then by the time we come to do a merge, the merging clusters will alre
have elected their own Cluster Controller nodes (CCs), so the merge becomes
simple matter of one CC handing control of its cluster’s nodes to another CC. 
CCs can exchange information about each others’ clusters, and within each m
ing cluster the new proposed cluster membership can be propagated by the C
that pairwise connections between all the newly discovered nodes can be esta
lished. If any of these connections fail, then the CCs concerned have to abort t
merge, and must not make another attempt at a merge until some other cluste
sition event occurs which makes it useful to retry the merge.

 What happens, then, if we attempt a cluster merge and find that there are just
pairwise connections between the clusters which cannot be established? We r
the merge, but it doesn’t need to stop there. By breaking up one or more of the
smaller clusters to evict some of the nodes which are failing to establish cross
nections, we might be able to establish a new larger cluster. However, at the sa
time we do not want to risk breaking up existing clusters unnecessarily just to 
attempt such a modified merge.

 We can introduce a new rule which helps here: after a failed cluster merge, th
cluster with the most votes never, ever tries to break up. However, we can allo
smaller clusters to fragment voluntarily. If a CC decides not to proceed with a 
merge with a higher-voting cluster, it can look at which inter-cluster connection
succeeded and which failed, and can try to identify exactly which of its own me
bers are in fact able to see all of the other cluster’s members. If it finds that som
its nodes would in fact be able to cross over to the other cluster, it can evict th
members from the local cluster. Those evicted cluster members will immediate
attempt a cluster merge themselves, and in that process should always look fo
largest neigbouring cluster to join, which in this case will be the larger of the tw
clusters which tried to merge in the first place.

 The result of this will be that we can donate nodes from one cluster to another
grow the larger of the clusters, while preventing partially-connected nodes fro
Integration
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ever disrupting the membership of the larger cluster. The cluster breakup mech
nism will therefore never break quorum.

Operation Requirements: Cluster breakup and communication faults.  Clus-
ter breakup is potentially a little more complex, since when a disconnection ev
occurs in a working cluster, we do not yet know the extent of the damage: perh
one single node has failed, or perhaps _all_ of the other nodes have become “f
because our network connection to them has died.

 One thing to note straight away is that a single channel error event must not b
ficient to trigger cluster disintegration: if only one channel in a point-to-point lin
(ie. only one route of multiple redundant routes between a pair of hosts) has di
we must retain the cluster. 

 We still want to trigger a cluster transition of some form, as the loss of any cha
always causes a complete link reset of the communications between those two
nodes and we need to recover the context of any messages which were in tran
between the nodes at the time. However, if the link does recover successfully (
fails over to a backup ethernet wire), we can record the resulting cluster transit
as a null event: we still need to perform some recovery to retry any messages 
were in transit when the error occurred, but we do not need to recover any clus
wide global state in this case.

 *** DISCUSSION POINT: ***

 Does the above point make sense? We _do_ need to perform some recovery 
case, so as far as the cluster integration layer is concerned this section is entir
accurate. However, we need to think about the visibility of such null transitions
higher layers of the cluster software.

 We can provide reliable data pipes between processes in the cluster at a high
level using packet sequence numbers which recover themselves over a cluste
sition. Think about two communicating high-level processes --- a web server an
CGI server, say --- in the case where an unrelated node drops out of the cluste
Those two processes should not be affected by the cluster transition, other tha
most a temporary stall in the servicing of cluster IO and DLM requests. The IO
pipe’s internal recovery from to channel failover can be transparent to the appl
tions.

 It is already planned for cluster transitions to be given a brief synopsis of whet
any significant node changes have occurred during the transition, so by just ma
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the rule that all communication errors produce a full cluster transition, we are n
forcing all of the rest of the cluster software to do full recovery. On seeing the f
“no cluster membership change” in the transition block, they can simply avoid 
doing persistent state recovery and limit themselves to communications recove

General operation

OK, I admit it. It would be inaccurate to describe the Integration Layer’s operat
as described in the rest of this document, as being purely a consequence of th
requirements above. Some of the requirements already stated are actually req
ments which arise from design decisions, not functional requirements. Please 
with me on this --- I *think* that where I’ve described a mechanism, rather than
rationale, in the above text, I have good cause in that the mechanism represen
broad design decision (rather than a mere point of detail) which simplifies the e
layer’s design. I’ll now try to explain the broad principles of operation I envisage
for the Integration Layer, how it all works together and why the overall plan ma
sense.

You might have noticed that I have simply assumed, in the above, that every s
cluster transition can be expressed as a combination of cluster breakups and c
merges. This really, really simplifies things enormously. For one, it means that 
never, ever have to deal with individual nodes in this model: every isolated nod
nothing more than a one-node cluster with an already-elected cluster controlle

Cooperation between different, already-established groups of nodes therefore
reduces to a problem of point-to-point communications between individual CC 
nodes. Such cooperation between currently-unclustered nodes is *always* a c
merge operation, never anything else (except that, possibly, we may want to a
diagnostic and monitoring code on top: that does not invalidate the Integration
mechanism as presented here).

A second major advantage of the merge/breakup concept is that it deals very 
cleanly with errors which occur during a cluster transition. If a cluster detects a
internal error (loss of a node or link) while in the progress of completing a clus
transition, it immediately drops everything and sorts out its internal problems fi

Thirdly, it also simplifies the management of complex faults in a cluster where 
complete any-to-any connectivity is lost. Such faults are dealt with in the break
phase of the transition, and in that phase, we always know _exactly_ who is al
Integration
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in the old cluster and we have to deal with them alone: we never have to deal 
any nodes outside the cluster until the cluster’s own internal state has been ree
lished.

It is important to refer back here to the general design principle of hierarchical 
phases of operation. In this merge/breakup model, cluster breakup is a more f
mental operation than cluster merge. Remember that the hierarchical phases p
ple means that any error takes us to a previous phase, and forward progress i
ever achieved by consensus. By dealing with the cluster breakup phase prior t
cluster merge phase, we ensure that merging is always a cooperative operatio
between working clusters: any internal cluster error is dealt with before we eve
as far as merging clusters. 

If, during a merge, one of the merging clusters detects the loss of an internal n
that cluster simply aborts the merge and reverts to the prior phase, reconfigurin
itself to deal with its internal error before bothering with the rest of the world. T
fact that we will start rebuilding this state by reentering the abort phase must e
that we propagate the error to the rest of the nodes we were merging with, so 
they themselves can detect the abort of merge phase.

The expected consequence of this is that the cluster which detected the intern
of node will quietly resolve its internal state before trying to join anybody else. 
Either it will complete that before the rest of the Cluster Superset finishes mer
(in which case it will try to trigger another merge), or before (in which case the
progress merge will be aborted). Either way, the previous, aborted merge is au
matically resumed only after the component clusters have dealt with node loss
Cluster merging simply does not have to deal with node loss: it only has to dea
with a general “oops, something went wrong” error which always results in a 
regression to the abort phase.

Transition Phases

 A Cluster Transition involves progress through a set of distinct phases. The ex
tion of each phase may be very rapid if we happen to know in advance what so
transition is occuring (eg. controlled eviction of a single node does not have to
form a complete CC reelection if the remaining nodes can all still talk to each o
afterwards, and the evicted node was not previously the CC). 
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 This section will contain a complete description of each of these phases. The 
descriptions will begin with the objectives of each phase: what the pre-conditio
and post-conditions are. The pre-conditions are sufficient to describe those thin
which the phase does NOT have to achieve, but can simply assume have alre
been achieved. The post-conditions describe the objectives of the phase by es
lishing the final results that the phase is required to achieve.

 ++ Abort Phase: 

Tell everybody that something terrible has happened.

Pre-conditions:   None at all: we can’t assume anything here since this is the st
we enter on getting an error of any description, either a recursive error during 
integration process or a fault detected during normal running of the cluster.

Post-conditions:   All cluster nodes which are still communicating with us, and 
which are in the current Commit Cluster; as well as all nodes which we may ha
been trying to merge with since beginning this cluster transition; have also retu
to Abort Phase. The connectivity of the Commit Cluster is moderately stable.

Mechanism:  The only inputs to the abort phase is the previous Committed Clu
Map, which exists at all times and which is not actually modified by the Integra
Layer transition mechanism at all (at least, not until the entire transition proces
completed and a new Commit Map has been established); and the current sta
each Link with nodes with the same cluster name.

 When no Link state changes concerning neighbours in the Commit Map have
occurred within a certain period (the Cluster Settling interval), we can enter Dis
covery Phase and start sending Discovery messages on all Links.

 If a neighbour sends us a Discovery message before our Settling interval is co
plete, we buffer it for use once we have settled and entered Discovery phase o
selves. We must not actually respond to that message until we have Settled.

 ++ Discovery phases: 

Gather information about the new state of the Cluster Superset

Discussion:  The first process we enter in a cluster transition is the breakup ph
the eviction of any unreachable nodes from the old Cluster, plus potentially the
Integration
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eviction of further nodes if the remaining nodes are no longer all fully connecte
each other.

 To do this, we need somebody actually make the decision on what the “best” 
connected subset of the old Cluster is still viable. We will call the node which 
makes this decision the Cluster Elector for the breakup phase.

 We also need to remember that when we lose contact with a node in the clust
that node may decide to evict itself from our cluster and form a new cluster on
own behalf, but communications with that node may be reestablished before w
have finished our own cluster transition. This is dealt with by observing that the
and recovered node must have a changed Cluster ID, and preventing nodes w
wrong Cluster ID from participating actively in the Breakup phase. The discove
phase therefore also needs to establish, for each node, whether the neighbour
nodes still have the same Cluster ID as we do.

 In this situation, the lost node will just have to wait until all of the nodes which
have still got the old Cluster ID have finished their eviction phase and have ent
Cluster Merge phase (in other words, the whole mess is dealt with before we l
the cluster transition altogether, but we don’t have to deal with it just yet: the o
ing of breakup phase before merge phase naturally deals with this sort of fault
no nodes survive with that cluster ID, then that’s fine too --- the resulting smalle
clusters will enter the merge phase eventually

 We define the term Related Nodes to refer to the set of neighbours of a given 
which (a) are still connected to that node, and (b) have the same cluster ID (w
necessarily implies that they were part of the same Commit Set as us previous

 The Related Node Superset of the old Commit Cluster Map is the transitive clo
of the Related Node function, and includes all of the old nodes which are conn
together over any multi-hop route of Related nodes.

 Cluster transitions can take arbitrary amounts of time, due to the fact that the 
phase will stall for as long as a communication Link is unstable (in other words
faults which are transitioning rapidly are bad news --- we need to think about m
anisms by which to dampen the effects of such nodes, but such a mechanism
bly involves voluntary exit of a node experiencing such problems and doesn’t 
directly change the Integration Layer’s behaviour at all).

 As a result of this, we can imagine a not-quite-partition of the cluster, in which
cluster partitions but then a single node which acts as a bridge between the pa
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tions comes back. If that node has not yet completed its own cluster transition 
(evicting itself from the previous cluster in the process), then all is fine: that nod
still Related to some others, and the Abort which follows the link state change w
the node rejoins its neighbours will eventually lead to the two partitions joining 
same Related Node Superset.

 If the “bridge” node has transitioned, on the other hand, we have two Related 
Supersets in the new cluster which are theoretically able to merge but which a
divided by an unrelated node. At this point we are just doing breakup, not merg
though, so we have to deal with the Related Supersets as quite distinct entitie
Therefore, we do _not_ want to pass discovery information over the bridge nod
discovery information must only be passed to Related Nodes, not beyond.

Mechanism:  For the Cluster Elector, we choose that node with the greatest “V
Function”, where the Value Function of a Node is some function ordered by:

• -ve number of degraded links to nodes which are still in the node’s Commit 
Map. We want to select a value function which minimises the amount of 
degraded link traffic in the common failure modes. Do we do this best by m
mising the number of non-degraded links active at the Elector node, or min
ing the number of degraded links? Probably the latter, so the value function
now) always prefers nodes with few degraded links. Then,

• CC: The existing CC in the Related Node Superset is always preferred as C
ter Elector if it is still reachable via any route through that Superset (unless 
has many degraded links due to recent faults). Failing that,

• Total number of votes from Related Nodes present on, or on nodes Related
that node; then, in case of tie, by

• Number of other nodes Related to that node; then,

• “Metric” of that node (a static configuration value intended to represent ava
able CPU power); then,

• Lexicographic order of the node’s unique nodename.

 The important point about this function is that it is unambiguous. Any node ca
generate a Value for itself, and pass that to other nodes; given that information
two nodes will always agree on which node has the higher Value.

 *** Note that by using the degraded link count as a high-priority sort key and t
node Metric as a low order key, we end up preferring to minimise degraded link
traffic rather than placing the Elector on the most CPU-capable node in the clu
Comments? Maximising the connectivity of the resulting cluster in the Eviction
Integration
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phase may require a good CPU --- should we optimise for that rather than opt
ing for communications at this point?

 What we now need is a mechanism by which all connectivity information in th
entire Cluster can be propagated to a single node which all nodes agree is the
one to be Cluster Elector. The mechanism needs to be able to deal with situat
like this:

Node:A-------B-------C-------D-------E 
Value: 4---------1------3-------2-------5

 where we have very little connectivity in the cluster: maybe only the point-to-p
serial cables between the nodes have survived, and each cluster can see only
immediate neighbours. We cannot simply propagate connectivity information to
neighbour with the best “value”, since nodes B and D in this example will end u
sending their information in opposite directions. So, first of all we will decide w
is to be the Elector by propagating Value information between nodes. Only onc
one node decides it has won the Election will we propagate information, and th
Elector will guide that phase by explicitly telling the other nodes what decisions
has come to.

 ++ Discovery Phase.

Pre-conditions:  All of our neighbours within the Commit Map have either enter
abort state or are unreachable: we have Reset our Links to them and have wai
long enough to be sure that either they have already completed the Reset neg
tion or they aren’t going to.

 Post-conditions: Everybody in the local Cluster Superset has propagated its lo
view of cluster connectivity (ie. which other nodes it can still see) to a new nod
which will become the “Cluster Elector”, which controls the move to the next 
phase.

Mechanism:  In this phase we want to propagate the Election Value function 
between nodes, and we want to propagate connectivity maps for the entire clu
back to the Elector. We choose the following algorithm:

Each node starts by sending its own value function to each of its Related neig
bours. 
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Each subsequent message between nodes includes a Value Function plus a n
empty list of connectivity maps. The Value Function of any message is the ma
mum of the Value Functions of any nodes whose connectivity is listed in the m
(The connectivity of a node is just a complete list of all other nodes still connec
to that node, plus the Link state: DEGRADED or UP.)

 When a node has received the initial Value Functions of each of its neighbour
can start to propagate connectivity maps. Propagation works from the node wit
lowest Value upwards. 

 The node with the lowest Value begins by sending its connectivity map to its ne
bour with the highest Value.

 When nodes has receive messages, they update their local database of conn
maps to maintain both (a) the total set of all nodes whose connectivity informa
is known, and (b) a list of connectivity maps which are known to each neighbou
a node discovers, in this manner, a new node which has a higher value functio
any

 [ Described more fully in discovery.txt ]

 ++ Eviction Phase

Pre-conditions:  one node --- the Elector node --- has a full map of the cluster c
nectivity and knows that it is the Elector. All other reachable Related nodes are
blocked somewhere in the Discovery phase.

Post-conditions: we have established a Cluster Controller within the current Co
mit Cluster to guide us through the rest of the cluster transition, or we have lef
cluster (and reformed a new cluster which will try to merge if possible with any
neighbouring clusters).

 The transition from Discovery phase to Eviction Phase is guided by the unique
Elector node. The Elector is responsible for making a unilateral decision about
which of the current members of the cluster should survive the transition and w
get evicted.

 This phase decides which node is going to act as Cluster Coordinator (“CC”) f
the remainder of the transition.
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Mechanism:  The Elector node makes a decision about the new shape of the c
ter. It must calculate the fully-connected subset of all surviving related nodes, 
which maximises:

• Total Votes; then,

• Total Metric (CPU capacity); then

• Total number of nodes.

 This subset of nodes becomes the New Cluster Map. The Elector then determ
from that map, the maximal subset of nodes which is fully connected by non-
degraded links only. This further subset is the “Functioning Subset” of the clus
and the nodes in that subset are “Functioning” nodes. Other nodes are marked
“Degraded” nodes.

Discussion:  Degraded Nodes

 It will be up to individual nodes to decide which of their internal services to sta
and which to suspend, on a transition between Functioning and Degraded mod
The most important reason for maintaining Degraded nodes in the cluster is to
tain Quorum: any votes belonging to a Degraded node still count towards the Q
rum in a cluster, and can therefore mean the difference between life and death
critical cluster services on a cluster failure. 

 Consider a cluster of 5 voting nodes: a communications fault may remove high
quality access to three of those nodes but we may still have degraded links fro
remaining two nodes to one of the failed nodes. In that situation, we still have 
votes out of 5 --- enough, barely, for quorum --- as long as that degraded node
remains in the cluster. However, if we remove it from the cluster (even cleanly, 
returning its votes), we are left with only 2 votes out of 4, and we lose Quorum

 However, in most cases, we hope that loss of high-quality communications to
node does not lose _all_ degraded communications: that’s why we have backu
serial interconnects, for example. In the above example, if the 2 evicted nodes
direct contact with the surviving cluster, they can still exit from the cluster clean
as long as there is some multi-hop path between the nodes. In this case, Quo
management must be involved in the cluster transition. For good quorum main
nance, it is absolutely critical that we perform that eviction in a clean manner w
allows the expected votes in the surviving cluster to be adjusted if necessary.

 to that set of nodes any other Related nodes which can see each node in the 
tioning Cluster, but which have Degraded connections to one or more Function
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Nodes. These nodes with Degraded connections can still belong to the new cl
but they are marked as Degraded, not Functioning, members. They are still pr
for sysadmin and vote tiebreaking purposes,

Error recovery:  The Eviction phase is not quite as simple as previous phases 
respect to error recovery, but it is not too complex to understand as long as we
in mind exactly what sort of recovery we need to deal with. The reason that the
Eviction phase introduces new complications is that up until this phase, we hav
started changing the membership of the cluster (as defined by the Cluster ID a
neighbouring node). During Eviction, we are for the first time performing a con
trolled modification of the cluster membership.

 Fortunately, we can still reuse the existing error recovery mechanisms. If we l
our Link to a Related node during this phase, we just restart the cluster transiti
going back to Abort phase. This is fine. It doesn’t matter exactly who in the clu
has completed Eviction and who has not. Any nodes whose eviction has comp
will now have a new Cluster ID; nodes which have not will still have the old Clu
ID. The Discovery phase explicitly limits itself to discovering only Related node
so after any error, we already have the required recovery mechanism in place 
work out who has and who has not yet completed the Eviction process.

 ++ Propagation Phase

 This phase propagates all information about nodes still reachable in the cluste
inter-node communication paths still working, to the CC node.

 ++ Proposal Phase

 The CC generates a new Commit Cluster Map, and proposes that map to eve
node.

 ++ Commit Phase

 The CC completes the transition by promoting the Commit Cluster Map to be 
Current Cluster Map, and requests all other nodes to do the same. The cluste
sition is seen by each node to be complete once this occurs: the CC sees the 
tion first and other nodes see it once the Commit message arrives.
Integration
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 Note that within each of these phases, we may have to pass information to no
which are not necessarily connected directly to the CC. If a cluster fault has en
up producing a partially-connected set of nodes, then at least CC election info
tion and cluster eviction information must be passed, preferably along with a n
cluster map indicating to the rejected node just which machines it could not se
the cluster (for diagnostic purposes, not for correctness: you cannot base your
correctness on the state of an invisible node!).

The details of each phase are as follows:

Abort Phase:  The aim of the abort phase is to make sure that every node whic
a member of, or which is connected to, the cluster, has entered cluster transiti
state. When we first begin the abort phase, we reset every Link within the clus
No Resets occur after this: they are not necessary, since any received commu
tions error represents an implicit guarantee that the remote node has entered 
cluster transition phase itself, anyway.

 We need to be aware that the entire cluster transition has some pretty fundam
complications: we can get a new cluster transition during it. For example, a clu
merge can be brought to a screaming halt by the death of one node in one of t
merging clusters. Therefore, we need to be able to reenter abort phase at any 
in the cluster transition, and this new abort must also reset communication link
with the new members we were trying to merge with at the time.

 We make the simple rule that all Links to nodes with the same cluster name m
be reset during a transition, even if those links are to nodes currently known n
be in our cluster. (Remember, a cluster partition due to partial cluster connectiv
will result in two or more separate clusters from the Integration Layer point of vi
but although those clusters will have different IDs, their basic cluster name wil
the same.)

 However, we do not have 100% synchronous cluster-wide state transitions (th
would be _so_ much easier if we did!). When we do any state transition, we ca
be entirely sure that our neighbours are currently in the same state that we are

 We may be in abort phase when our neighbours are not. They may still be in 
phase when we have already decided to exit that phase. *** @@@ I need to t
about this a good deal more when the exact transition between states has bee
lined in a great deal more detail than we have here. ***
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 From this, it also follows that a Link reset from a node not currently in our clus
must be treated as a serious error if that node is currently trying to merge with
(so we need to reenter abort phase), but if a reset arrives on a Link to a node 
is not currently in the cluster due to a previous failed cluster merge, it does not
essarily cause an abort. It might, however, cause the local cluster to begin reev
tion of the partial connectivity of the Cluster Superset, initiating a voluntary Abo
to start the cluster merge process.

Discovery Phase:  

Election Phase:  

The Worry Set 

We maintain, at all times, a set of nodes called the Worry Set. This set contains
of all nodes which we care about at the moment. A Link State change for a no
the worry set always restarts the cluster transition with a move to Abort Phase

Why do we need this? Nodes outside our immediate cluster should not be abl
kill the cluster if they die. If we have evicted a node (due to voluntary exit or du
a fault) or have rejected an attempt by that node to merge with our cluster, then
node may still have a connection to us but the state of that connection is not im
tant to the cluster. We have already decided that the other node is not going to
in the fun, so we shouldn’t care if that node disappears.

However, things get more complicated during a cluster transition, where the C
rent Cluster Map and the New Cluster Map are quite distinct things. When we a
the middle of proposing a cluster merge, for example, the new prospective mem
of the cluster are not yet in our cluster, but if a link to one of them disappears, 
most definitely need to abort the merge. On the other hand, if we have already
decided that some remote node is to be evicted from the cluster during the clu
transition, and that node then dies, then we probably don’t care.

During the normal running of a cluster, the Worry Set is the set of all nodes in t
Current Cluster Map.

During the cluster breakup phase, the Worry Set must be the same: during tha
phase we are concerned above all else in the discovery of what our old cluste
Integration
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looks like, finding out which nodes and which links have survived. We are not a
interested in any other nodes at this point.

Into the merge phase, we are in a different situation. All of the nodes which co
us and try to merge with us must be added immediately to our Worry Set, so th
entire merge mechanism can be aborted and restarted if one of those neighbo
dies. Once into the merge phase, we add to the Worry Set every member of ev
cluster which tries to merge with us. We remove them from the Worry Set if we
up deciding to reject the merge.

Once the cluster transition is complete, of course, the new Commit Map becom
the Worry Set.

 LocalWords: CC ie pre neighbour ve nodename minimise optimise optimising 
LocalWords: maximises sysadmin tiebreaking ID
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CHAPTER 10 The Discovery Algorithm
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A few notes about the discovery algorithm used in cluster breakup to determin
best fully-connected subset of surviving machines for forming the new cluster.

We have a value function, and we want to achieve three things:

• Decide on which nodes has the best value function; 

• Propagate all connectivity maps to that node; and

• Propagate that node’s cluster reconfiguration decision to the rest of the nod
even those which are only indirectly connected to it.

Consider the network of nodes/value functions:

Example D1:
Node:A-------B-------C-------D-------E 
Value: 4-------1-------3-------2-------5

The nodes B and D both see themselves as local minima for the value function
both see a local maximum nearby. How do we propagate the appropriate value
functions across the network, without using an algorithm which introduces too 
much traffic in a still-fully-connected network?
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Whatever the algorithm, we need to have a termination condition. We decide to
minate once a node is able to determine that it is the Elector, ie. that it has the
value function anywhere in the graph.

We can only make this decision at any node once that node:

• Posesses the value functions for every point in the graph, and

• Is sure that it has seen the entire graph. To know that, it must have seen th
nectivity maps for every node in the network, and must have checked that e
neighbour mentioned in each of those maps has also provided a map.

Every node knows, at all times, the state of each of its Links to neighbours and
names of those neighbours, so no special communications step is needed at a
to determine the node’s own connectivity map.

Assume that we start the discovery algorithm by, on each node, telling each of
neighbours what our value function is. Each node then sends its local connecti
map to the neighbour with the best value function. In a fully connected cluster,
value exchange is O(N**2) and the map exchange is O(N). That’s OK for now 
the RESET traffic when we do a cluster abort is O(N**2) anyway, and the valu
packets are small, so this is only a small incremental cost over the RESET tra

Now, we want to prevent any further unnecessary traffic in the common cases 
where the network is largely connected. We decide that only nodes which are 
so-far --- nodes whose connectivity maps indicate that it has the best value of a
nodes seen so far --- may progress the discovery algorithm further.

They do so by identifying “edge” nodes in the transitive closure of the locally-h
connectivity maps --- nodes which are mentioned as neighbours in the known 
nectivity maps but whose own maps are not yet known.

A best-so-far node proceeds by sending out routed “ping” messages to those 
nodes, using the already-known connectivity maps to provide the route. The p
messages include the sender’s value function and the list of nodes which the m
sage must pass through on the way to the edge node.

On receiving such a packet, an edge node (identified because we have reache
last hop in the route) sends back its local connectivity graph (plus any other co
tivity maps it may happen to have). Every other node on the route just increme
the hop count in the packet. We maintain the full route in the packet when we p
it, to allow the reply also to be routed.
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For every such ping packet, each node updates its local copy of the “highest va
seen” value function by maximising it with the sender of the ping. Any ping wit
lower value function is dropped. As a result, if two locally-maximal nodes (A an
in example D1 above) both start the flood-fill edge expansion algorithm, interm
ate nodes (like C above) will eventually detect the “better” of the two nodes (E)
and will stop A’s ping packets from propogating further. 

Each cycle of edge expansion proceeds by the best-so-far node pinging all ed
nodes and waiting for all responses. The ping dropping described in the previo
paragraph ensures that this process gets terminated whenever any node dete
some locally-maximal best-so-far node is actually not the best node in the clus

The entire procedure terminates once a best-so-far node has no more edge no
and by this time we know for sure that it has found the entire connectivity grap
Other locally-maximal nodes (like A above) may still be waiting for ping 
responses, but when the newly-determined Elector starts the next phase of the
ter transition, those nodes will break out of that state in response to a reconfigu
command from the Elector.
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CHAPTER 11 Barrier Operations
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Goals and discussion

Barrier functionality is commonly required in distributed systems. It provides a 
synchronisation mechanism by which multiple nodes can coordinate activity.

The basic definition of a barrier is that it provides a guaranteed synchronisatio
point in distributed processing which is valid over all nodes in the cluster: it stric
divides time into a pre-barrier and a pos-barrier phase. The barrier may not ne
sarily complete at exactly the same time on every node, but there is absolute g
antee that the barrier will not complete on any node unless all other nodes hav
begun the barrier.

Why is this useful? Sometimes in cluster operations you have some task whic
broken up into phases, and you need to make sure that all nodes in the cluste
completed one phase of the task before you let anybody move on to the next p
Cluster recovery (after a cluster transition occurs) is full of such cases: for exa
when you recover a shared-data service such as the cluster namespace, you w
suspend processing of new namespace requests everywhere before you start
recovery; and you want to make sure that all nodes have completed their name
recovery before you allow any node to start processing new namespace reque
Barriers between these phases allow such synchronisation, and it is because t
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cluster’s basic recovery process requires barriers that a barrier API must be 
included in the core cluster services.

 Functional requirements

There are several different things that we want barriers to be able to provide. I
thinking about barrier functionality, remember:

You cannot have a barrier without knowing in advance what the membershi
the barrier is.

 Say you want to synchronise the start of some work being performed in a dist
uted application. The definition of the barrier is that once all clients have reque
the barrier, the barrier completes. However, when the first two or three process
the application start up and request their barrier, how does the barrier API know
that there are in fact more process not yet connected to the barriers which will
to participate in the barrier?

 In other words, as the processes are starting up, we are faced with the possib
that all processes *currently* connected to the barrier have triggered a barrier 
gression, but that there are still processes which have not reached the barrier 
because they have not yet even registered with the barrier API.

 So, we cannot progress the barrier until after we know that all users of that ba
have registered with the barrier API, *and* all registered clients of the barrier A
have requested the barrier itself.

 In other words, we have to have some mechanism in the API for closing off th
of participants in the barrier.

Therefore, barrier use is in two phases. First, one or more processes around th
cluster register as users of a named barrier. Secondly, we perform barrier sync
sations: any process can request a barrier, and the operation only completes w
all processes with an existing connection to the barrier have made the same re

There are several different ways we may want to specify barrier membership. M
application processes will want to be able to use an API which either says
Barrier Operations
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 “there will be exactly N members of the barrier, don’t allow it to progress until t
many processes have joined”,

 “All barrier joins have been registered, enable the barrier now”, or

 “Trust me, I’ll not advance the barrier until all interested processes have joined
freeze the membership list as soon as you see a barrier advance.”

In addition, recovery really wants a special case:

 “Exactly one process from each node in the cluster will participate in the barri
and the barrier is destroyed on cluster transition.”

Having this functionality present in the barrier API allows cluster recovery and 
cluster startup to share the barrier API as a way of synchronising during cluste
transitions. In particular, it means that when a node starts up, the server proce
implementing higher level cluster APIs can use the barrier API to ensure that r
ery of the existing nodes in the cluster waits for the corresponding server proc
in the new node to be up and running before the barrier is advanced.

Multi-stage recovery is important for many services: for example, in the cluste
namespace, we must wait for all nodes to stall processing of new requests bef
we start recovering the namespace state; and we must wait for all nodes to fin
that recovery before re-enabling the API processing. We can use multi-step ba
for that.

We associate a cluster-wide count with each barrier. Whenever a request is ma
for a barrier “NAME:<count>”, the request will be blocked until all other con-
nected barrier clients have also made a request for barriers “NAME:<n>” wher
>= count. This allows some clients to miss out some stages of the barrier sequ
if they want to.
Barrier Operations 63



Barrier Operations

64
 Barrier Operations



CHAPTER 12 Quorum
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When it comes down to it, quorum is essentially the deceptively complex busin
of establishing some property which can only ever be held in at most one part
of a partitioned cluster.

Quorum is at first glance a relatively simple topic. In any cluster, we have the c
cept of the number of votes present in active, surviving members of the cluste
the total number of votes (the “Expected Votes”) present in the cluster includin
down or unreachable nodes. If we can see an overall majority of expected vote
then we have quorum.

Unfortunately, things are not quite so simple (you _knew_ I was going to say th
didn’t you? :) There are a number of issues which complicate the whole busine

• Dynamic cluster configuration. Ideally, we would like the cluster to maintain 
Expected Votes itself, automatically. When a node first starts up, how does 
know how many other nodes it has to wait for until it decides that it has esta
lished a quorum? Existing cluster implementations often solve this problme
forcing expected votes to be a static configuration variable requiring manua
setup. We really want to do better than that if we can.

• Voluntary exit versus node failure. When a node loses primary communicat
with its peers, it may still have a backup, degraded communication link ove
which it can negotiate a clean, voluntary exit from the cluster. Similarly, if th
sysadmin brings a node down for routine maintenance, the node can withdr
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from the cluster cleanly. In both cases, we might prefer the vote of that node
be withdrawn from the cluster in a controlled manner which adjusts the 
Expected Votes of the remaining nodes, to maximise the chance of retaining
Quorum (remember, if we remove a Vote, we _always_ make it harder to re
Quorum over future failures unless we also adjust the Expected Votes to co
pensate).

To provide a Voluntary Exit mechanism, we want to have a way by which nodes
withdraw not only their vote, but also their Expected Vote contribution from the
cluster. If we allow this, the condition must be persistent: the node cannot then
allowed to rejoin the cluster and give its Expected Vote back unconditionally. If 
Expected Votes could be cast back in all cases, there would be a danger that a
ber of nodes which had been shutdown and voluntarily exited from the cluster,
might then try to reform a cluster on their own if they happen to reboot themse
into a separate partition from the original cluster.

 We can deal with these concerns in the following manner:

• We will maintain a cluster-wide “quorum database” listing each node and th
votes owned by that node.

• The quorum database will be persistent, and must be replicated (with a ser
number for conflict resolution) on every voting node in the cluster. 

• Modifications can be made to the quorum database ONLY IF QUORUM IS 
ALREADY HELD.

Now, if a node is removed manually from the cluster, the cluster’s expected vo
can be adjusted accordingly. If a cluster partition occurs and a manually-remov
new node rejoins a non-quorate partition, it is impossible for quorum to be rega
accidentally, no matter how many such nodes rejoin: quorum is required befor
those new nodes will be able to vote.

The observant reader will note that this makes it impossible for a brand new cl
to obtain quorum. We must provide a bootstrap facility to allow the system adm
istrator to add a casting vote to the quorum database manually before a newly
figured cluster can achieve quorum. The casting vote will grant quorum (it will b
the only vote in the quorum database, so votes == expected votes), and once 
happens, all of the nodes in the new cluster can then register themselves in th
rum database.
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Of course, if a node leaves the cluster unexpectedly, then its vote should rema
the quorum database even though the vote is no longer being cast: the quorum
base simply grants a node the right to vote.

Extra votes

The case of the two-node cluster is a notorious special case for quorum. In thi
case, it is in principle impossible to have a symmetric quorum with the same n
ber of votes, and still to have quorum survive a single node failure. That make
failover of quorate services hard on a two-node cluster!!

The basic problem is that if a node loses contact with its partner, it has no way 
sure whether the other node is actually dead (and therefore failover should oc
or whether in fact the failure was in the connection between the two machines
instead.

There are two solutions to this problem in widespread use. One is to make sur
the partner is dead by killing it, hard --- SGI’s FailSafe product allows one node
deactivate the power supply on its partner, for example. The second is to add 
extra, external vote of some description to act as a tie-breaker. A “quorum disk
a disk, usually SCSI, which is connected simultaneously to both nodes in the c
ter --- is often used for this.

Any alternative quorum sources can be integrated into this quorum design. Th
only restriction is that the quorum source must be registered in the quorum data
before its votes may be used.

This cluster design already offers one feature designed to distinguish between
munications split and node failure. The use of “degraded” backup connection
between nodes for the cluster integration protocol allows controlled negotiation
the eviction of a single node from the cluster if a partition occurs on the primar
cluster interconnect. 

Is there anything we can do if a node dies altogether, though, to recover its los
vote? The answer is strictly “no” if we cannot tell the difference between a dea
node and a disconnected node.
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However, if we have faith in our backup communications to the lost node, and i
can convince ourselves with good confidence that the lost node is in fact truly 
(and therefore it cannot be part of a partitioned cluster), then we can use a “ca
vote” concept to recover quorum:

• Whenever true quorum (quorum without a casting vote is achieved), any ca
vote present in the quorum database is removed and a single “floating vote
registered. The casting and floating votes do not contribute towards the exp
votes. The casting vote counts towards quorum votes, but the floating vote 
not.

• If any cluster transition results in the loss of true quorum but semi-quorum (
have exactly half of the expected votes) remains, AND if we can verify abso
lutely for sure that at least one of the lost nodes is truly dead, THEN we can
convert any existing floating vote into a casting vote.

• The casting vote mechanism will also be used to “kick-start” an initial cluste
described above: manual creation of a casting vote will enable quorum to b
established in a new cluster.

The judgement of whether another node is dead or not will have to be configure
the system administrator. By default, the cluster will never ever risk creating a 
ter partition, and will not use a casting vote.
Quorum
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The “Cluster Namespace” is a simple concept: it is a cluster-wide table of 
“NAME=VALUE” pairs, much like the environment variables of a standard Unix
process. The namespace is a dynmic table: names do not survive a cluster reb
Each name in the table is owned by a process in the cluster, and will be remov
that process dies or its node leaves the cluster.

The namespace intended to provide an API to query and locate all services aro
cluster. It is not a service management API, in that it is not intended to provide
general interface for interaction with services. 

It is, however, intended to be the single clearing-house through which all queri
locate a service are directed. For example, all printers queue servers in a clust
may register their printers in the cluster namespace under the name “PRINTE
<printer-name>=<printer-type>”. Any user can query for all “PRINTER/*” name
to find the printers in the cluster, and the query reply will include the cluster no
for each printer returned. It would also be possible for a printer, having been re
tered, to export extra information about itself such as “PRINTER/<name>/STA
TUS=idle” if it wished. Similarly, exported NFS directories, exported network 
block devices and so on can all be registered with such a namespace.

The fact that the namespace API knows about individual processes is key to m
this work. An application export a name, in such a way that the name disappea
the application dies, but it is also possible for another application to query that 
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name and set up an active dependency on it. In this case, the dependent appl
will receive an asynchronous notification from the namespace service if anythi
happens to the name in question, for example if its value changes, or it dies al
gether, or its host moves from one node to another due to failover.

There is another critical property of the namespace layer: a namespace regist
may be made either shared or exclusive. A shared name assignment simply m
that multiple instances of the name may be present. For example, in the printer
any number of hosts might offer a printer named “PRINTER/DEFAULT”, and a 
print request to the default printer may appear on any of those printers.

An exclusive name assignment will only be granted to one process in the clus
once. However, that does not mean that only one node can request the name.
or more processes request assignment of the same name exclusively, then the
will be granted the name, and the others can stall until the name becomes ava

This provides a flexible mechanism for managing failover. A service can try reg
ter the same name on each node, and the namespace will ensure that it is gra
only on node node. The request can include a preference value, in which case
node with the highest preference for that name will be granted it. However, if t
node dies, the existing queued request for the name on another node will be 
granted, and the service on that node will be able to continue.

Any other services, on that node or on any other, which were dependent on the
name can request a callback so that if such failover occurs, they can deal with
change in service, so client requirements for failover are manageable as well a
server requirements.

In practice, I expect that there will be a local failover service on each node whi
uses a simple scripting configuration to allow the user to set up failover groups
multiple services started in a particular order. In such cases, the use of an exc
name “FAILGROUP/<name>” can be used to make the failover of each failover 
group atomic around the cluster. 
Namespace
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