
File Systems for Clusters from a Protocol Perspective

Peter J. Braam
School of Computer Science
Carnegie Mellon University

Abstract: The protocols used by distributed file
systems vary widely. The aim of this talk is to give an
overview of these protocols and discuss their
applicability for a cluster environment. File systems
like NFS have weak semantics, making tight sharing
difficult. AFS, Coda and InterMezzo give a great deal
of autonomy to cluster members, and involve a
persistent file cache for each system. True cluster file
systems such as found in VMS VAXClusters, XFS,
GFS introduce a shared single image, but introduce
complex dependencies on cluster membership.

1. Introduction
Distributed file systems have been an active area of
research for more than two decades now. Surprisingly,
the design of some extremely well engineered systems
such as Sprite and VAXClusters are not widely known
and are not part of the Linux offering yet. Simple
systems such as NFS have become common place,
together with the complaints accompanying their
behavior. However, the more complex systems have
not yet achieved sufficient maturity to replace NFS. In
this paper we will describe some protocols in detail
and make brief comparisons with other systems.

We will first give a detailed outline of NFS and AFS
functionality. There are very interesting differences
between these, well described by their protocols.

We then turn to Coda and InterMezzo where client
autonomy rules. Coda’s protocols have been extended
with features for server replication, disconnected
operation and InterMezzo engages in write-back
caching through client modification logs. The
semantics of these file systems are different from Unix
semantics.

SAN file systems such as VAXClusters (Lustre), XFS,
and GFS allow systems to share storage devices.
These systems provide a tightly coupled single image
of the file system. Here lock management and cluster
membership becomes a key ingredient.

Key differences between the design of these file
systems can be understood through analyzing what is
shared. For NFS sharing is at the level of the vnode

operations. For Coda and InterMezzo sharing is
almost at the granularity of files. All read and write
locking to deliver semantics, is managed by the file
servers. In contrast, SAN file systems share storage
block devices and negotiate access through a
distributed lock manager.

We conclude our paper by discussing the implications
for use in clusters. Necessarily we are looking at all
available systems, but merely highlighting a few
systems with which we are more familiar.

Acknowledgement: This research was supported by the
Air Force Materiel Command (AFMC) under DARPA
contract number F19628-96-C-0061. Intel and Novell
provided additional support. The views and conclusions
contained in here are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either express or implied, of AFMC, DARPA,
Intel, Novell, Carnegie Mellon University, Western
Washington University or the U.S. Government.

2. Sharing files and Caching

2.1 NFS
The simplest file sharing protocols, such as those in
NFS, share files through an api on the client. This api
is implemented through remote procedure calls and it
is largely similar to the api used by an upper layer of a
local file system when retrieving or storing blocks or
querying directories. In particular, the protocol makes
no assumption about server state, and exploits little or
no caching.

The NFS protocol is easily described. The server
answers requests for:

1. Read only operations: getattr, lookup, readdir,
read, readlink, statfs, mount

2. Tree modifications: mkdir, link, symlink,
rename, unlink, rmdir

3. File modifications: setattr, write

Most NFS implementations try to do a limited form of
caching, with doubtful semantics such as “re-use a data
block if less than 30 seconds old”. Modifying
operations must reach stable store on the server before

returning on the client. Security in NFS is arranged by
trusting the client and communicating the user id of the
calling process to the server.

Implicit in the design of systems like NFS is a desire to
provide Unix semantics among the systems sharing
files. For tightly coupled systems on fast networks and
not too many clients, this is a reasonable goal. With
large numbers of clients or networks of lower
bandwidth, this goal will severely compromise
performance.

NFS v3 and v4 refined this protocol by making it
possible to relax the synchronous nature of updates,
and to fetch attributes for directory entries in bulk.
Among other variations on NFS Spritely-NFS is worth
mentioning - it has a much-improved caching scheme.

NFS is widely available. Large specialized NFS
servers are available from corporations such as
Network Appliances, and most free Unix clones come
with NFS version 2 and 3.

2.2 AFS
We now turn to AFS. AFS was the first file system to
exploit a persistent cache on clients, which caches both
file and directory data. AFS is a commercial file
system available from Transarc, but a free clone named
ARLA is available and inter-operates with deployed
AFS systems.

During normal operation, clients can assume that data
is valid, until notified by the server with a CallBack, or
InitCallbackState RPC asking the client to discard one
or all cache entries associated with the calling server.
This will happen when other clients are about to make
updates. AFS has “last close wins” semantics, as
compared with Unix’ “last write wins” semantics.

AFS caches directories on clients and once objects
have been cached with callbacks read only access does
not involve any server traffic. The AFS cache is
persistent. Even after a reboot of a client or server,
cache entries can be re-used by exploiting an attribute
named “DataVersion” associated with each file.

The namespace of all data made available by AFS
servers is unified under a single directory “/afs”. Client
administration is minimal, it is merely necessary to
inform the client of the names of AFS cells that need to
be accessed. Each cell is a group of AFS servers
falling under a single administrative domain. Each cell
exports volumes, (a.k.a. file sets) which have “volume
mount points”, in the /afs tree. When a client traverses
a mount point in the /afs tree, it contacts a volume
location server in the appropriate cell to find the
servers storing the volume.

The AFS protocol is simple and powerful. Unlike NFS
both clients and servers must answer RPCs. The client
does this to keep informed about currency of data.

A. Client interface:

Semantics: Probe, Callback, InitCallbackState.

B. Server interface:

1. Read only operations: FetchData, FetchACL,
FetchStatus

2. Tree modifications: RemoveFile, CreateFile,
Rename, Link, Symlink, MakeDir, RemoveDir

3. Storing: StoreData, StoreACL, StoreStatus
4. Volume calls: GetVolumeStatus,

SetVolumeStatus, GetRootVolume
5. Liveness and semantics: GetTime, BulkStatus,

GiveUpCallBacks
6. Locking: SetLock, ExtendLock, ReleaseLock

AFS has powerful security. Clients are not trusted, and
must connect with credentials obtained from
authentication servers, usually in the form of Kerberos
tokens. An ACL based protection scheme supplements
this authentication.

2.3 DCE/DFS

Further developments from AFS led to the DCE/DFS
file system part of OSF and documented in detail at
[DCE/DFS].

On the servers a complete re-engineering of AFS took
place, with VFS+ support in the file system layer, to
export local Episode file systems through the kernel
level file exporter interface. Fileset support was added
to Episode and usage of the local file system does not
compromise semantics of DFS. The server interfaces
were extended with several key ingredients:

1. Token management: clients can obtain tokens on
objects such as files and extents. Single system
Unix semantics are available through DFS.

2. Translators: by adding readdir and lookup calls
to the server interface, DFS file exporters can
serve NFS and Novell clients.

3. Volume level callbacks: just like in Coda
volumes can be validated with a single version
vector if no changes have taken place.

4. File level access control lists: to refine security
the AFS directory level ACLs were supplemented
with ACLs per file.

File space on servers is not directly accessible in AFS
and Coda, as it is in simple systems like NFS. The
cache file and directory data exploited by AFS are

stored in a private format. Ficus and DCE/DFS do this
for server space only through stackable layers and
VFS+ respectively, see [FICUS], [DCE/DFS].

On the client side, DFS resembles AFS with the main
differences coming from token management allowing
for fine-grained sharing.

DFS 1.2.2 is available in source form. It is an
extremely large system and has not been ported yet to
Linux.

3 Coda, Ficus and InterMezzo

3.1 Coda
Coda descends from AFS version 2. Coda adds
several significant features to AFS offerings:
disconnected operation with reintegration, server
replication with resolution of diverging replicas and
bandwidth adaptation. A multi-RPC protocol that
allows multiple requests to be dispatched and
responses to be collated without serializing remote
procedure calls supports Coda replication.

To support disconnected operation Coda performs
operation logging when servers are not available to
make synchronous updates, or when bandwidth makes
this unattractive. The operations are written in a client
modification log, the CML, which is reintegrated to the
server when connectivity allows. During reintegration,
the server replays the operations it finds in the CML.
When the server has processed the directory
modifications in the CML, it back-fetches the file data
from the client. Coda’s bandwidth adaptation adapts
the rate and delay at which the CML is reintegrated to
the server based on perceived network performance.
To deal with client, server and network failures during
reintegration, the Coda version stamps have been
extended with a host id of the client performing the
update. Upon reconnection Coda can rapidly validate
cache-state using file and volume version stamps. To
prepare for disconnection, Coda keeps collections of
files hoarded in client caches.

Server replication in Coda is achieved by assigning a
volume storage group to a newly created volume,
consisting of the servers holding the volume data.
Coda uses a write all, read one model. To guarantee
consistency the basic invariant is that equality of the
version-stamp of individual replicas of files and
directories guarantees their equality. Before a client
knows the version stamps of all available replicas are
equal it will not use the data. However, a client will
accept an incomplete available volume storage group
(AVSG), i.e. availability of a subset of the full volume
storage group (VSG).

During modifications with an AVSG smaller than the
VSG, servers will log the modifications made to the
file system, much in the same way as clients use a
CML while disconnected. To keep replicas in sync,
Coda uses two phase update protocol. First each
server holding a replica performs the update and
reports success or failure to the client. To complete the
update the client installs a final version-stamp and
vector on each of the AVSG members with a COP2
multi-RPC. Usually, these COP2 messages are
piggybacked on other RPCs, but they will be delivered
within 10 seconds.

If servers in the AVSG return different version-stamps,
clients initiate resolution. Resolution is a server to
server protocol exploiting version vectors in
conjunction with version stamps and server
modification logs.

The version vector of an object count the number of
updates seen by individual servers and allows for
simple reconciliation of differences in important cases
such as objects missing from some of the servers
(“Runts”). This is based on partial ordering between
version vectors, which can lead to a dominant replica
of an object. A single WeaklyResolve RPC can
resolve these cases.

More delicate divergences of data need a 5 step
resolution protocol between the servers. A randomly
chosen coordinator first locks volumes. During phase
2, server modification logs and version stamps are
obtained from all subordinates, including the
coordinator itself for the so-called closure of set of
diverging objects. The coordinator merges these logs
and sends them out to the subordinates.

Subordinates parse modification logs and deduce
operations missed and proceed to perform these
missing operation in phase 3. Subordinates now return
list of inconsistencies, if any, that arose. If
inconsistencies arose these are marked in Phase 4, and
a user will use a repair tool to choose which replica of
the object to retain. Where no inconsistencies were
found each subordinate installs a final version-vector
during Phase 5, and logs are truncated if the set of
subordinates equals the VSG. The resolution is now
complete.

Coda extends the AFS interface with several calls:

A. Client interface:

Backfetch

B. Server interface for clients:

Reintegrate, Repair, Validate, Resolve, COP2

C. Server resolution interface:

• Simple Runt resolutions: WeaklyResolve

• Full resolution: Lock, FetchAndMerge,
ShipAndPerform, MarkInconsistencies,
InstallFinalVV

UCLA’s Ficus project shares many features with Coda.
We refer to [Ficus] for details.

3.2 InterMezzo
InterMezzo is a prototype file system exploiting Coda
style reintegration as a write back caching mechanism,
as well as for disconnected operation. InterMezzo uses
the local disk file system for cache and server space
through a filtering file system (a.k.a. stackable layer)
and does write-back caching at kernel level, with very
little overhead. See the references [InterMezzo], for
details.

InterMezzo is implemented with very little code and
while in early stages of development it looks
promising.

The write back caching protocol in InterMezzo is
based on permits. These are obtained before
modifications can be made, and must be surrendered,
together with the modification log when a server
revokes the permit. Future versions of Coda will
support a similar permit mechanism. Like DCE/DFS
InterMezzo performs bulk lookups of directories.

4 Cluster File Systems

4.1 VAXClusters (and Lustre)
A true cluster file system was available from Digital
Equipment Corporation as early as 1985.
VAXClusters have a magnificent architecture, which is
extraordinarily well documented in [VAXFS] and
[VAXCL].

VAXClusters maintain membership based on quorum,
which prevents cluster fragmentation. Cluster
members can share designated storage devices,
residing either in systems or in network attached
storage devices. A variety of interconnects can be
used.

The VAXClusters file system is derived from the local
file system by annotating the access to data to closely
interact with the distributed lock manager. The lock
management protocol is what mostly controls the
features and semantics of the file system.

Locks are obtained for resources, which are named and
organized in trees. To acquire a lock, ancestors must

be locked first. Each lock hierarchy, i.e. the tree of
resources under a root lock, has a mastering node,
which is usually the first system to acquire a lock in
this tree. To find the node mastering a resource,
querying a distributed resource directory, based on a
hash value of the resource name, follows self-
inspection. If the resource does not yet exist, the
system looking up the resource becomes the mastering
node.

Locks can be held on cluster members by processes or
by the operating system in a variety of modes:
exclusive, protected read or write, concurrent read or
write and unlocked. A simple bitmap defines
compatibility between these 6 modes. When a member
requests a lock in a new mode, all nodes holding the
lock in a mode not compatible with this request are
notified and execute a callback function.

Each system can obtain a great deal of autonomy,
through locks allowing write back caching, quota
usage and reading without contacting the lock
manager. The organization is broadly similar to the
design of AFS callbacks, and many details are given in
the quoted references.

Several important points should be made about this
design. When a member leaves the cluster, for
example through a failure, a complex recovery process
is needed. Unlike systems like AFS and Coda, there is
no client server relationship between the cluster
members, and recovery from failed members is much
more involved.

Secondly a major difference between the design of
VAXClusters and the systems discussed in the
previous section lies in the assumption that the cluster
members trust each other, and have a secure network
for intra cluster communication.

All systems engaging in locking of file objects must
worry about deadlocks. There are two ways to deal
with these: one can acquire locks using an ordering, in
which deadlocks will not happen. If an ordering
cannot be used, deadlocks can arise and must be
detected. A general-purpose distributed lock manager
like the one found in VAXClusters can detect
deadlock.

The Lustre project (read Linux clUSTRE) aims to
build a similar cluster file system for Linux.

4.2 The Berkeley family: Sprite, Zebra
and XFS.
Sprite [Sprite/Zebra] was a distributed operating
system with an extremely interesting design. Sprite
supported a Unix API, process migration and a totally

transparent shared file system. Sprite typically ran in
clusters consisting of several dozens of systems. The
Sprite file system made extensive use of caching in
VM and provided Unix semantics, as well as extensive
facilities for process migration, remote device access
and communication with user level servers. Sprite
allows caching only as long as there was no read/write
or write/write sharing on a file. By forwarding open
calls to the server, caching was disabled when a non-
exclusive writer appeared. The Sprite client/server
interface for ordinary file service superficially
resembles that of NFS and AFS, but precise timing and
semantic constraints render Sprite’s file system quite
different.

It is interesting that the SMB file system used in
Windows [CIFS] has many semantic similarities with
Sprite. Unfortunately the SMB protocol is
extraordinarily elaborate and exists in rather many
dialects and doesn’t resemble any of Sprite’s clean
design.

Zebra [Sprite/Zebra] was developed towards the final
phases of the Sprite project and provided striping
across disk arrays. Zebra did not stripe individual
files, but instead used a per client log, and striped the
log. Zebra relied on a single file manager to locate the
servers holding data and to manage cache consistency.

The XFS file system [XFS] evolved from Zebra
towards a file system for storage area networks. In
XFS the distinction between clients and servers is
blurred. In XFS there is no centralized manager, and
the motto is “anything anywhere”.

Perhaps the most transient feature of XFS is that the
authoritative copy of the data may be fetched from the
buffer cache of a client, eliminating the server as a
point of central control.

Frangipani-Petal [Frangipani/Petal] is a Compaq
project to build clustering for shared storage,
somewhat related in its goals to XFS.

4.3 GFS
The Global File System [GFS] is a SAN file system
project at the University of Minnesota. GFS worked
with industry to exploit shared locks, implemented on
the disks, so called dlocks. GFS can exploit logical
volumes, has no central point of management and is
not log-based. GFS manages its own disk layout, with
support for filesets and tree-based directories. Initially
the file system followed a write through model. The
system is not fully featured as of the time of this
writing, but its results are promising. GFS is reported
on elsewhere in this workshop.

5 Conclusions for Clusters

From the earlier sections in this paper, it is clear that
different file systems offer different level of sharing:

• informal sharing: NFS
• sharing across file closes: AFS, Coda, InterMezzo
• single image sharing: Cluster file systems and

DCE/DFS

To achieve various forms of file sharing, there are
other solutions apart from file systems, such as using a
user level library. PVFS [PVFS] is a library that
provides applications with further I/O capabilities.

For Linux clusters it would be most desirable if all
choices were available and offered the highest levels of
robustness and performance. Unfortunately at present
this is far from true. Linux needs better NFS, as well as
totally mature AFS, Coda, InterMezzo as well as GFS
and Lustre file systems.

6 References
[CIFS] See: http://www.cifs.com/

[Coda/AFS] See: http://www.coda.cs.cmu.edu,
http://www.cs.cmu.edu/,
http://www.stacken.kth.se/project/arla/

[DCE] See: http://www.opengroup.org/dce/.

[Ficus] See: http://ficus-www.cs.ucla.edu/travler/

[GFS] See: http://gfs.lcse.umn.edu/

[InterMezzo] See: http://www.inter-mezzo.org

[PVFS] See:
http://ece.clemson.edu/parl/pvfs/index.html

[Sprite/Zebra] See:
http://www.cs.berkeley.edu/projects/sprite

[XFS] See: http://now.cs.berkeley.edu/

[Franginpani/Petal] See:
http://www.research.digital.com/SRC/personal/thekkat
h/frangipani/home.html

[VAXFS] VMS File System Internals, Kirby McCoy,
Digital Press 1990.

[VAXCL] VAXcluster Principles, Roy Davis, Digital
Press, 1993.

