
DRBD

Philipp Reisner <philipp.reisner@gmx.at>

April 22, 2001

Abstract

DRBD is a kernel module for building a two-node HA cluster under Linux. It
supports different protocols in order to meet a broad range of user needs. It is shown
that the potential dependencies between written blocks can be easily analysed on
the sending node in order to allow limited write reordering on the receiving node.
The device reaches between 50 % and 98 % of the maximum theoretical performance.
DRBD-based clusters have been used in production since June 2000 and, overall, they
have done very well. They are used to mirror various databases and to form a highly
available NFS Server.

1 High availability by redundancy

Hard disk mirroring (RAID1) is a well known method to increase the availability of
servers. It prevents data loss in the case of hard disk failure. Mirroring inside a sin-
gle machine, however, does not contribute to availability if a component other than the
hard disk is failing. A short distance between the two hard disks also does not protect
data from disasters like fire.

The first challenge is solved by so-called HA clusters, where the active server is backed
up by a standby machine. Usually these clusters are equipped with shared disks. A
shared disk is a hard disk which can be accessed from all nodes of a cluster. In an HA
cluster the shared disk is usually a RAID-set of disks. But in shared disk clusters the
distance between the disks is still very low, since the disks of the RAID-set are located
inside a single case.

DRBD is a device driver for Linux which allows you to build clusters with distributed
mirrors, so-called "shared nothing" clusters. This architecture does not only have the ad-
vantage that the physical distance between the two copies of the data can be magnitudes
greater than with shared disks, but it is also (magnitudes) cheaper than configurations
with shared disks. (See also Appendix B)

2 Building blocks

The components needed to build a simple cluster are a mechanism to synchronise the
cluster node’s disks, a monitoring component, a file system, and finally the daemon pro-

1



viding your service.

The monitoring subsystem monitors the functioning of the primary cluster node. If it
encounters a failure, it carries out the failover process.

Thus, the file system needs to be able to go online from any state, since we cannot predict
the time of a failover. After a failover the file system must be in the same state as before
the failover. An important prerequisite is provided (among others) by journaling (roll
forward) file systems.

Finally, the service you provide also needs to handle the failover. It must for instance
have a stateless network protocol or a built-in retry mechanism. If the service maintains
files, it must be able to tolerate a file which was left in an inconsistent state by the failing
instance.

3 Block device drivers under Linux

At first we need to have a closer look at the characteristics of a block device:

� You can pass blocks to the block device.
But the call (ll_rw_block()) may return before the blocks have safely arrived on the
real device.

� The block device may change the order of the write operations.

� You can check if a block has reached safety on the real device (buffer_uptodate()).

� You can wait until a block has reached safety (wait_on_buffer()).

From the block device’s point of view, you get blocks (do_request()) and you need to sig-
nal the completion of IO (end_request()). You may reorder blocks you get by a do_request()
call.

It is very critical to signal the completion of write requests without compromising cor-
rectness while delivering good performance.

4 Protocols

4.1 Protocol A

Protocol A signals the completion of a write request as soon as we have written the block
to the local disk and sent it out to the network. We signal the completion of the operation
without knowing whether the block has arrived or will arrive on the disk of the mirror.

Of course this protocol is not suitable for every application, since it may violate the trans-
action behavior of the system. Example:

2



A database signals its client that the last transaction was completed sucess-
fully. But the blocks modified by the transaction are still on their way to the
standby cluster-node. If the active node is crashing now, the standby machine
will roll-back the last trasaction since it was incomplete and continue to offer
the service to the clients.

While this protocol is not suited for mirroring your local databases, it is very well suited
for long-distance mirroring, since it has the lowest preformance penalty for the sending
system, especially on long1 links.

4.2 Protocol B

Protocol B is better suited for making the database used in the above example highly
available. Protocol B considers a write operation complete as soon as we receive an ac-
knowledgement that the block was received by the standby system.

It has to be noted, however, that protocol B still presents a small residual risk, arising
when the cluster manager is unaware of protocol B’s properties:

The standby server fails after it has issued an acknowledgement and before it
has had the chance to write the blocks to disk. The primary server may signal
a client that a transaction was successful and fail afterwards.
The operating team decides to repair the former standby server, thus the for-
mer standby server becomes the new active server. – This server has not got
the last transaction, but the client thinks that the transaction was successful.

Protocol B is not very well suited for mirroring a complete data-processing center across
the Atlantic, because it will slow down the operation of the sending system on a long-
latency network link. This is caused by the limited number2 of request slots of Linux.
If no free request slot is left, an application that tries to issue a further write request is
blocked until a request slot is freed (= an older request gets completed).

4.3 Protocol C

Protocol C considers a write operation complete when a block-has-been-written acknowl-
edgement is received from the standby system. – This protocol can guarantee the trans-
action semantics in all failure cases.

1A link with high bandwidth and high latency; a link which stores a lot of data in itself.
2Linux’s request queue has a fixed length of 128 entries. Only 42 of these slots can be used by DRBD’s

write requests.

3



5 Write ordering

Some file systems require that certain blocks hit the media in a determined order, for
example a JFS needs to write a transaction (the commit record must be last) into the
journal before it does any updates to the home locations.

It does this by postponing the home location updates until it knows that the writes to the
journal are on stable storage. (This is done with wait_on_buffer() and/or buffer_uptodate())

From DRBD’s point of view the question is which blocks might be reordered when writ-
ing to the secondary’s disk.

To ensure exactly the same write order as on the primary, we must use the following
scheme:

1. Get a block from the network and put it onto the buffer cache.

2. Write that buffer and wait for IO completion.

3. Continue with 1.

It is possible to soften this restrictive scheme a bit. It is known that there is no dependency
between two blocks if there has been no IO completion event for the first write before
arrival of the second write.

Example:

completion

IO request A B C
D

E F G
H

D A C E F H G B time

There is no causal dependence between A, B, C, D or E, but F might depend on the IO
completion of D and A. F does not depend on C but G might depend on C, and so on.

We could exploit this by adding every block we get to an epoch set. When we signal
a write completion event for a block from this epoch, we need to issue a write-barrier
message on the wire and clear the epoch set.

packets A B C D E F G H time

barrier

4



Another example:

packets A B C D E F G H time

completion

IO request A B C
D

E F G
H

D A C EF H G B time

This would allow to pass blocks within the bounds of two write barriers to ll_rw_block()
without needing to wait for IO completion between them. When receiving a write barrier,
the write of further blocks must be postponed until all blocks of the former epoch have
been written.

6 Cluster wide state management

DRBD provides a virtual shared disk to form a highly available computing cluster. By
doing so it relies on a cluster manager software in charge of monitoring the nodes of the
cluster and of reconfiguring the nodes of the cluster in case of a node failure.

6.1 Heartbeat

By the time I started working on DRBD, the only cluster manager available to the open
source community was Alan Robertson’s heartbeat, and therefore heartbeat has so far
been used as cluster manager for DRBD-based clusters.

An instance of heartbeat runs on each node of the cluster and monitors all nodes. If a node
fails, it simply starts the services which were running on the failed node on the node that
is still working. When a failed node rejoins the cluster after having been repaired, the
services are automatically failed back to their home node.

6.2 DRBD

Heartbeat does its job as a cluster manager quite well, but DRBD brings new require-
ments to the task of cluster management, which originally were not met by heartbeat.

Since DRBD is used on all nodes of the cluster, it is vital to ensure that the applications are
always running an a node which has the up-to-date data on its disk and that the nodes
that do not have up-to-date data are updated as quickly as possible.

5



6.3 Meta-data

In order to be able to decide which node has the up-to-date copy of the data, DRBD
needs to maintain a small amount of meta-data consisting of the inconsistent-flag which
indicates if the node is the target of a running synchronisation process and thus currently
has inconsistent data on its disk and the generation-counter which itself has four parts.
The four parts of the generation-counter are:

human-intervention-count This counter is increased when the state of the cluster is
changed by human intervention, it has the highest priority of all four parts.

connected-count This counter is increased if the state of the cluster changes and the node
is part of a running DRBD cluster, or the secondary node just left the running clus-
ter.

arbitrary-count This counter is increased if the state is modified by the cluster manage-
ment software when the node is not part of a running cluster.

primary-indicator The active node of a running DRBD cluster sets it to 1 while the
standby node sets it to 0.

This meta-data is stored in a non-volatile space on each node. If the nodes can com-
municate and one node is active, then the active node’s generation count overrides the
generation-count of the standby-node (of course with the exception of the primary-indicator).

During the node’s boot process it needs to look out for its partner node. If it cannot talk
to its partner node, it has to wait until it becomes available or an operator decides that it
has to become the active node.

In order to identify the node with the up-to-date data, the components of the meta-data
are investigated in the order they are mentioned above. If a node with set inconsisten-
flag is present, the other node has the up-to-date data. If the first components of the
generation-counters (the human-intervention-counters) are different, the node with the
higher value has the up-to-date data. The second components are considered only if the
first components are equal. If even the connected-counts are equal, the next components
(the arbitrary-counts) are considered, and so on.

6.3.1 Examples

The values of the generation-counter are written as ordered quadruples.

In the first example we have the situation that node A has the up-to-date data, since it
was running longer before both nodes were down, clearly node A has to become the
primary after cluster restart:

6



P Node A Node B Description

1 P<0,0,0,1> S<0,0,0,0> Both nodes up, generation-counter is equal.

2 P<0,1,0,1> -<0,0,0,0> Node B goes down, node A increases the second component, because it was

part of a running cluster.

3 -<0,1,0,1> -<0,0,0,0> Both nodes are down.

4 ?<0,1,0,1> ?<0,0,0,0> The cluster is restarted.

5 P<0,2,0,1> S<0,2,0,0> A updates B and, again, the second component is increased because the nodes

are connected again.

This is the classic example of a highly available cluster, where node B has to take over
while the former primary is down:

P Node A Node B Description

1 P<0,0,0,1> S<0,0,0,0> Both nodes up, generation-counter is equal.

2 -<0,0,0,1> S<0,0,0,0> Node A goes down, node B does not increase the generation-counter.

3 -<0,0,0,1> P<0,0,1,1> Heartbeat starts the services on B.

4 -<0,0,0,1> -<0,0,1,1> Both nodes down.

5 ?<0,0,0,1> ?<0,0,1,1> Cluster restart.

6 S<0,1,1,0> P<0,1,1,1> A synchronises from B and B becomes primary.

This example shows the common power failure, and with the meta-data management
as outlined in this section, it is perfectly fine to use protocol B for an application that
requires valid transaction behaviour, since the example in section 4.2 assumed a wrong
decision by the cluster manager:

P Node A Node B Description

1 P<0,0,0,1> S<0,0,0,0> Both nodes up.

2 -<0,0,0,1> -<0,0,0,0> Common power failure.

3 ?<0,0,0,1> ?<0,0,0,0> Cluster restart.

4 P<0,1,0,1> S<0,1,0,0> The former primary becomes primary again.

This example outlines human intervention:

P Node A Node B Description

1 P<0,0,0,1> S<0,0,0,0> Both nodes running.

2 -<0,0,0,1> S<0,0,0,0> A’s power cable fails; B leaves the generation counter unchanged.

3 -<0,0,0,1> P<0,0,1,1> Heartbeat starts up the services on node B.

4 -<0,0,0,1> -<0,0,1,1> Unfortunately B’s hard disk fails now.

5 ?<0,0,0,1> -<0,0,1,1> A’s power cable is repaired and the operator decides that it is best to restart node

A now.

6 P<1,0,0,1> ?<0,0,1,1> Magically B’s hard disk recovers, but ruling of the operator is accepted.

7 P<1,0,0,1> S<1,0,0,0>

And finally the worst case scenario, a temporarily network outage:

7



P Node A Node B N Description

1 P<0,0,0,1> S<0,0,0,0> W Both nodes running; Network working.

2 P<0,1,0,1> S<0,0,0,0> B Network breaks. A increases the second component, since the secondary

left the cluster.

3 P<0,1,0,1> P<0,0,1,1> B Heartbeat on node B starts the services since it assumes that A is down.

4 -<0,1,0,1> -<0,0,1,1> B Power fails.

5 ?<0,1,0,1> ?<0,0,1,1> W Power and netwok are working again.

6 P<0,2,0,1> S<0,2,0,0> W

6.4 Acknowledgements

I wish to acknowledge Alan Robertson and other members of the DRBD mailing list who
originated and helped to develop the idea of keeping persistent metadata in a tuple of
counters of different importance to help manage the versioning problem.

7 Synchronisation when a node joins the cluster

Beside the normal operation where data blocks are mirrored as they get written, it must
be possible to synchronise the content of the mirrored disks. This is necessary if one
node rejoins the cluster after an outage or if the cluster is restarted after an outage of both
nodes.

Synchronisation is designed not to affect the operation of the node that runs the clus-
ter’s application. It runs in parallel to the normal mirroring. In order to ensure that the
application on the active node is not slowed down by the resynchronisation, the resyn-
chronisation may only use a limited amount of the network’s bandwidth.

The usual way to update the hard disk of a node is to copy every block from the active
node to the standby node. This is called full synchronisation.

If a node leaves the cluster for a short time3, it is only necessary to copy the blocks to the
joining node that were updated while the joining node was away. This is called quick
synchronisation.

Quick synchronisation is implemented with an in-memory bitmap that records all mod-
ifications to blocks while the standby node is away. As there are no write acknowledge-
ment packets in protocols A and B, there is an acknowledgement packet for write barri-
ers. In the case of a lost connection, all packets in not-yet-acknowledged epoch sets are
immediately marked as out-of-sync in the bitmap.

But there is an unobvious restriction to the use of quick synchronisation. Quick syn-
chronisation may only be used when the standby node has left and rejoined the cluster.
Here is an example that shows that it is not possible to do quick synchronisation after an
outage of the node in primary state:

3The only requirement for a short time is that the active node is not restarted during this time.

8



The application on top of DRBD decides to write a data block to the storage
and therefore the block is written to the local disk and sent via the network
to the standby node. The block reaches the local disks, and just before it can
leave the node via the network interface card the node crashes. The standby
node takes over and starts the application and, as long as protocol B or C were
used, the write of the block was never acknowledged to the file system and
the cluster is in a valid state after the failover.
But if the former primary node would join the cluster (now as standby node),
updated only with a quick synchronistaion, it would have that one block on
its disk that did not go out to the network before it crashed.

A quick synchronisation can be interrupted and continued by a failure of the standby
node, since a bit gets cleared only if the standby node confirms that the block has been
written to disk.

8 Performance

The most important constraint on DRBD’s performance is of course the performance of
the components involved, the two disks and the interconnection network between the
nodes.

Read as well as write throughput in degraded mode are 89 % of the throughput of the
local disk with a very low deviation of 1.41 %.

Throughput of mirrored writes is affected by the performance of both disks and the per-
formance of the network. This chart gives only a very rough overview of achieved results.

0

2

4

6

8

10

12

14

16

disk DRBD n.c. prot. A prot. B prot. C

[M
B

/s
]

dd throughput

PentII / PentII / 4,33MB/s
PentII / PentII / 9,7MB/s
K6−3 / K6−3 / 8,6MB/s
K6−3 / K6−3 / 8,7MB/s

K6−3 / K6−3 / 0,94MB/s
K6−2 / K7 / 11,1MB/s
K6−2 / K7 / 11,1MB/s
AXP / Pent / 0,95MB/s
AXP / Pent / 1,04MB/s

The lines are labelled with the processors of the active and the standby system
and the throughput of the interconnecting network.

9



9 Experiences in production

At CUBiT IT Solutions we have been using DRBD in production for more than nine
months now. It is used on two clusters, one of them runs two instances of mySQL
databases and a NFS server and the other one runs a PostgreSQL database and a messag-
ing server, which also contains a database.

The PostgreSQL cluster is running stable by itself and has not had a single failover in
months, which is probably due to the fact that it is only very slightly loaded.

The other cluster, which is running the mySQL databases, is rather heavy loaded and has
caused severe troubles. We had crashes caused by:

� machine check exceptions4

It seems that these are caused by hardware defects in CPUs or mainboards.

� crashes of SCSI busses
We are using expensive big-name SCSI RAID controllers in these machines, but as
one of the hot pluggable SCSI disks died, the whole SCSI bus was not usable any
more and the machine crashed hard.

� kernel bugs
Various Linux 2.2.x kernels have bugs which cause complete systems hangs under
high memory pressure. The system keeps on printing “do-try-to-free-page-failed
for process XXX” onto the console screen, and does nothing else any more.

With all these crashes the cluster built out of DRBD and heartbeat worked as expected,
and kept our customers’ applications up and running (of course interrupted by the failover
time).

The following shortcomings and problems we discovered:

� Resynchronisation is ways too slow.

� When heartbeat gets confused, it sets both nodes of the cluster into primary state.
With the DRBD release which was stable at that time it was not possible to recover
from this situation without shutting down the application for a short time.

� Since the stable release does not include the meta-data management nor was heart-
beat ready to deal with DRBD’s requirements concerning which node needs to be-
come primary, cluster recovery after a common power failure is ways too compli-
cated for use in production.

These problems are currently beeing worked on and by the time of the publication of this
paper they will hopefully be eliminated.

4Machine check exceptions were introduced with the PentiumIII CPU and inform the operating system
that the current CPU context is corrupted.

10



A Resources

Web site http://www.complang.tuwien.ac.at/reisner/drbd/

Mailing list http://lists.sourceforge.net/lists/listinfo/drbd-devel

B System overview

Disk Disk

Disk driver Disk driver

DRBD DRBD

Disk scheduler Disk scheduler
Buffer cache Buffer cache

File system File system

NIC driver NIC driver

TCP/IP TCP/IP

Service Service

NIC NIC

...

References

[Pfi98] Gregory F. Pfister. In search of Clusters. Prentice-Hall PTR, Upper Saddle River
1998.

[Rei00] Philipp Reisner. DRBD Festplattenspiegelung übers Netzwerk für die Realisierung
hochverfügbarer Server unter Linux. Diploma thesis at the Vienna University of
Technology. Http://www.complang.tuwien.ac.at/Diplomarbeiten/reisner00.ps.gz

[Rob00] Alan Robertson. Linux-HA Heartbeat System Design. Proceedings of the 4th
Annual Linux Showcase and Conference, Atlanta, October 10-14, 2000, At-
lanta, Georgia.
Http://www.usenix.org/publications/library/proceedings/als2000/robertson.html

11


